Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

LOW VOLATILITY

Control of emissions Low consumption Low volatility, constant viscosity... [Pg.282]

The main criteria for selecting a stationary phase are that it should be chemically inert, thermally stable, of low volatility, and of an appropriate polarity for the solutes being separated. Although hundreds of stationary phases have been developed, many of which are commercially available, the majority of GLC separations are accomplished with perhaps five to ten common stationary phases. Several of... [Pg.565]

Another important characteristic of a gas chromatographic column is the thickness of the stationary phase. As shown in equation 12.25, separation efficiency improves with thinner films. The most common film thickness is 0.25 pm. Thicker films are used for highly volatile solutes, such as gases, because they have a greater capacity for retaining such solutes. Thinner films are used when separating solutes of low volatility, such as steroids. [Pg.567]

Preparing a Volatile Sample Gas chromatography can be used to separate analytes in complex matrices. Not every sample that can potentially be analyzed by GG, however, can be injected directly into the instrument. To move through the column, the sample s constituents must be volatile. Solutes of low volatility may be retained by the column and continue to elute during the analysis of subsequent samples. Nonvolatile solutes condense on the column, degrading the column s performance. [Pg.567]

A big step forward came with the discovery that bombardment of a liquid target surface by abeam of fast atoms caused continuous desorption of ions that were characteristic of the liquid. Where this liquid consisted of a sample substance dissolved in a solvent of low volatility (a matrix), both positive and negative molecular or quasi-molecular ions characteristic of the sample were produced. The process quickly became known by the acronym FAB (fast-atom bombardment) and for its then-fabulous results on substances that had hitherto proved intractable. Later, it was found that a primary incident beam of fast ions could be used instead, and a more generally descriptive term, LSIMS (liquid secondary ion mass spectrometry) has come into use. However, note that purists still regard and refer to both FAB and LSIMS as simply facets of the original SIMS. In practice, any of the acronyms can be used, but FAB and LSIMS are more descriptive when referring to the primary atom or ion beam. [Pg.17]

In addition to low volatility, the chosen liquid should be a good all-around solvent. Since no one liquid is likely to have the required solvency characteristics, several are in use (Table 4.1). If a mass spectmm cannot be obtained in one solvent, it is useful to try one or more others before deciding that an FAB spectrum cannot be obtained. [Pg.21]

Bombardment of a liquid surface by a beam of fast atoms (or fast ions) causes continuous desorption of ions that are characteristic of the liquid. Where the liquid is a solution of a sample substance dissolved in a solvent of low volatility (often referred to as a matrix), both positive and negative ions characteristic of the solvent and the sample itself leave the surface. The choice of whether to examine the positive or the negative ions is effected simply by the sign of an electrical potential applied to an extraction plate held above the surface being bombarded. Usually, few fragment ions are observed, and a sample of mass M in a solvent of mass S will give mostly [M + H] (or [M - H] ) and [S -I- H]+ (or [S - H] ) ions. Therefore, the technique is particularly good for measurement of relative molecular mass. [Pg.81]

There are methods for vaporizing solids of low volatility by placing them on a thin wire, which is then raised to a high temperature within a fraction of a second (direct chemical ionization, DCI). This rapid heating allows some vaporization without decomposition, but with the development of later ionization methods, it is now rarely used. [Pg.283]

The main problem in this technique is getting the atoms into the vapour phase, bearing in mind the typically low volatility of many materials to be analysed. The method used is to spray, in a very fine mist, a liquid molecular sample containing the atom concerned into a high-temperature flame. Air mixed with coal gas, propane or acetylene, or nitrous oxide mixed with acetylene, produce flames in the temperature range 2100 K to 3200 K, the higher temperature being necessary for such refractory elements as Al, Si, V, Ti and Be. [Pg.65]

Plasticizers. About 2.5% of U.S. adipic acid consumed in 1988 was used in two basic types of adipic ester based plasticizers (195). Simple adipate esters prepared from Cg—alcohols are used especially as PVC plasticizers (qv). Eor special appHcations requiring low volatility or extraction resistance, polyester derivatives of diols or polyols are preferred. [Pg.247]

HalogenatedFluids. Chlorocarbons, fluorocarbons, or combinations of the two are used to form lubricating fluids (see Chlorocarbons and CHLOROHYDROCARBONS Fluorine COMPOUNDS, ORGANIC). Generally, these fluids are chemically inert, essentially nonflammable, and often show excellent resistance to solvents. Some have outstanding thermal and oxidation stability, because they are completely unreactive even in Hquid oxygen, and extremely low volatility. [Pg.265]

Nltropropane. As much as 9100 t of 2-nitropropane once were consumed for use in coatings annually. Concern about toxicity and a general movement to low volatile organic compound (VOC) coatings have resulted in almost the complete disappearance of this use for 2-nitropropane. However, derivatives such as 2-meth5l-2-nitro-l-propanol (used in tire cord adhesive) and 2-amino-2-methyl-l-propanol (a pigment dispersant and buffer), have served as an outlet for 2-nitropropane production. [Pg.104]

Growing concerns over solvent costs and atmospheric poUution from solvent-home coatings necessitate low volatile organic compounds (VOC)... [Pg.497]

Undiluted DMAMP, AMP-95, and AB cause eye bums and permanent damage, if not washed out immediately. They are also severely irritating to the skin, causing bums by prolonged or repeated contact. Of these three aLkanolarnines, only AMP has been studied in subchronic and chronic oral studies. The principal effect noted was the action of AMP on the stomach as a result of its alkalinity. The no-observed-effect level (NOEL) in a one-year feeding study in dogs was 110 ppm in the diet. In general, the low volatility and appHcations for which these products are used preclude the likelihood of exposure by inhalation. [Pg.18]

When additional lubricants, eg, mineral oil and butyl stearate, are added to PS, easy-flow materials are produced. Improved flow is usually achieved at the cost of lowering the heat-deformation temperature. Stiff-flow PS has a high molecular weight and a low volatile level and is useful for extmsion apphcations. Typical levels of residuals in PS grades are Hsted in Table 2. Differences in molecular weight distribution are illustrated in Figure 4. [Pg.505]

The sesquiterpenes found in essential oils have low volatilities compared with monoterpenes and so are isolated mainly by steam distillation or extraction, but some are also isolated by distillation or crystallization. Most of the sesquiterpene alcohols are heavy viscous Hquids and many crystallize when they are of high enough purity. Sesquiterpene alcohols are important in perfume bases for their odor value and their fixative properties as well. They are valuable as carriers of woody, balsamic, or heavy oriental perfume notes. [Pg.426]

The copolymers are insoluble in water unless they are neutralized to some extent with base. They are soluble, however, in various ratios of alcohol and water, suggesting appHcations where deUvery from hydroalcohoHc solutions (149) but subsequent insolubiUty in water is desired, such as in low volatile organic compound (VOC) hair-fixative formulations or tablet coatings. Unneutralized, their Ts are higher than expected, indicating interchain hydrogen bonding (150). [Pg.534]

Qua.driva.Ient, Zirconium tetrafluoride is prepared by fluorination of zirconium metal, but this is hampered by the low volatility of the tetrafluoride which coats the surface of the metal. An effective method is the halogen exchange between flowing hydrogen fluoride gas and zirconium tetrachloride at 300°C. Large volumes are produced by the addition of concentrated hydrofluoric acid to a concentrated nitric acid solution of zirconium zirconium tetrafluoride monohydrate [14956-11-3] precipitates (69). The recovered crystals ate dried and treated with hydrogen fluoride gas at 450°C in a fluid-bed reactor. The thermal dissociation of fluorozirconates also yields zirconium tetrafluoride. [Pg.435]

Fig. 6. Size distribution of an urban aerosol showing the three modes containing much of the aerosol mass. The fine mode contains particles produced by condensation of low volatility gases. The mid-range, or accumulation mode, results from coagulation of smaller aerosols and condensation of gases on preexisting particles. Coarse particulates, the largest aerosols, are usually generated mechanically. Fig. 6. Size distribution of an urban aerosol showing the three modes containing much of the aerosol mass. The fine mode contains particles produced by condensation of low volatility gases. The mid-range, or accumulation mode, results from coagulation of smaller aerosols and condensation of gases on preexisting particles. Coarse particulates, the largest aerosols, are usually generated mechanically.
Anthracite. Anthracite is preferred to other forms of coal (qv) in the manufacture of carbon products because of its high carbon-to-hydrogen ratio, its low volatile content, and its more ordered stmcture. It is commonly added to carbon mixes used for fabricating metallurgical carbon products to improve specific properties and reduce cost. Anthracite is used in mix compositions for producing carbon electrodes, stmctural brick, blocks for cathodes in aluminum manufacture, and in carbon blocks and brick used for blast furnace linings. [Pg.498]

If agglomerating, classify in low volatile group of the bituminous class. [Pg.216]

L = lignite SB = subbituminous HVB = high volatile bituminous MVB = medium volatile bituminous and LVB = low volatile bituminous. [Pg.217]


See other pages where LOW VOLATILITY is mentioned: [Pg.155]    [Pg.321]    [Pg.379]    [Pg.282]    [Pg.283]    [Pg.287]    [Pg.387]    [Pg.314]    [Pg.199]    [Pg.19]    [Pg.64]    [Pg.72]    [Pg.92]    [Pg.265]    [Pg.152]    [Pg.156]    [Pg.62]    [Pg.122]    [Pg.43]    [Pg.328]    [Pg.378]    [Pg.51]    [Pg.188]    [Pg.332]    [Pg.504]    [Pg.225]    [Pg.214]    [Pg.216]    [Pg.216]   
See also in sourсe #XX -- [ Pg.8 ]

See also in sourсe #XX -- [ Pg.519 ]

See also in sourсe #XX -- [ Pg.601 ]




SEARCH



Low volatile content

Low volatile fuels

Low-volatile bituminous coal

Low-volatility bituminous coal

Low-volatility compounds

Low-volatility plasticizers

Low-volatility substances

Volatility at low temperature

© 2024 chempedia.info