Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lone pairs reacting with

To explain the enantioselectivity obtained with semi-stabilized ylides (e.g., benzyl-substituted ylides), the same factors as for the epoxidation reactions discussed earlier should be considered (see Section 10.2.1.10). The enantioselectivity is controlled in the initial, non-reversible, betaine formation step. As before, controlling which lone pair reacts with the metallocarbene and which conformer of the ylide forms are the first two requirements. The transition state for antibetaine formation arises via a head-on or cisoid approach and, as in epoxidation, face selectivity is well controlled. The syn-betaine is predicted to be formed via a head-to-tail or transoid approach in which Coulombic interactions play no part. Enantioselectivity in cis-aziridine formation was more varied. Formation of the minor enantiomer in both cases is attributed to a lack of complete control of the conformation of the ylide rather than to poor facial control for imine approach. For stabilized ylides (e.g., ester-stabilized ylides), the enantioselectivity is controlled in the ring-closure step and moderate enantioselectivities have been achieved thus far. Due to differences in the stereocontrolling step for different types of ylides, it is likely that different sulfides will need to be designed to achieve high stereocontrol for the different types of ylides. [Pg.375]

The obvious intermediate, 239A, will now react with some aluminium species to give an intermediate like 239B, which can react further if the lone pair on nitrogen halps to expel the oxygen atom. Try now to complete the mechanism. [Pg.75]

Electrophilic Attack at Nitrogen. The lone pair on pyridiae (1) = 5.22) reacts with electrophiles under mild conditions, with protonic... [Pg.324]

On the other hand these are compounds with marked 1,4-dipolar character, having electron lone pairs at the terminal heteroatom and an electrophilic center at C-4 Consequently, they can react with polarized multiple bond systems, even when these are extremely electron-poor [225]... [Pg.871]

Notice in the list of Lewis bases just given that some compounds, such as carboxylic acids, esters, and amides, have more than one atom ivith a lone pair of electrons and can therefore react at more than one site. Acetic acid, for example, can be protonated either on the doubly bonded oxygen atom or on the singly bonded oxygen atom. Reaction normally occurs only once in such instances, and the more stable of the two possible protonation products is formed. For acetic add, protonation by reaction with sulfuric acid occurs on... [Pg.59]

What kind of chemistry do enols have Because their double bonds are electron-rich, enols behave as nucleophiles and react with electrophiles in much the same way that aikenes do. But because of resonance electron dona lion of a lone-pair of electrons on the neighboring oxygen, enols are more electron-rich and correspondingly more reactive than aikenes. Notice in the following electrostatic potential map of ethenol (BbC CHOH) how there is a substantial amount of electron density (yellow-red) on the a carbon. [Pg.845]

The chemistry of amines ts dominated by the lone pair of electrons on nitrogen, which makes amines both basic and nucleophilic. They react with acids to form acid-base salts, and they react with electrophiles in many of the polar reactions seen in past chapters. Note in the following electrostatic potential map of trimethylamine how the negative (red) region corresponds to the lone-pair of electrons on nitrogen. [Pg.921]

When the aromatic group of the sulfoxide is replaced by a heteroaromatic group (e.g., N-methylimidazole), the internal coordination between Li—N to form a five-membered metallocycle apparently predominates over Li—O coordination to form a four-membered metallocycle . Reaction of imidazole (S)-sulfoxide 16 with benzaldehyde produces aldol 17 as the major product in which the a-H and the sulfoxide lone pair are syn (equation 14) imidazole (R)-sulfoxide 18 reacts similarly (equation 15). The stereochemical outcome of these reactions is rationalized in terms of a-lithiosulfoxides in which the reactive diastereomer (i.e., 20 and 21) is that having one diastereotopic face of the five-membered Li—N metallocycle carrying both H and sulfoxide lone pair. [Pg.830]

Tungsten alkynyl Fischer carbene complexes are excellent dienophile partners in the classical Diels-Alder reaction with 1-azadienes (see Sect. 2.9.2.1). On the contrary, the chromium-derived complexes exhibit a different behaviour and they react through a [4S+3C] heterocyclisation reaction to furnish azepine derivatives [116] (Scheme 68). The reaction is initiated by a 1,2-addition of the nitrogen lone pair to the carbene carbon followed by a [l,2]-Cr(CO)5 shift-pro-... [Pg.104]

The boron atom in BF5 can complete its octet if an additional atom or ion with a lone pair of electrons forms a bond by providing both electrons. A bond in which both electrons come from one of the atoms is called a coordinate covalent bond. For example, the tetrafluoroborate anion, BF4 (31), forms when boron trifluoride is passed over a meral fluoride. In this anion, the formation of a coordinate covalent bond with a fluoride ion gives the B atom an octet. Another example of a coordinate covalent bond is that formed when boron trifluoride reacts with ammonia ... [Pg.201]

Silicon reacts directly with chlorine to form silicon tetrachloride, SiCl4 (this reaction was introduced in Section 14.17, as one step in the purification of silicon). This compound differs strikingly from CC14 in that it reacts readily with water as a Lewis acid, accepting a lone pair of electrons from H20 ... [Pg.735]

Gleiter and Ginsburg found that 4-substituted-l,2,4-triazoline-3,5-dione reacted with the propellanes 36 and 37 at the syn face of the cyclohexadiene with respect to the hetero-ring. They ascribed the selectivity to the secondary orbital interaction between the orbitels (LUMO) of 36 and 37 with antisymmetrical combination of lone pair orbitals (HOMO ) of the triazolinediones (Scheme 24) [29]. [Pg.196]

Push-spectator carbenes of the type 31 (R, R = alkyl) were synthesized and reacted with various Lewis Acids to compare the reactivity of the phosphorus and carbene centers. Two such reactions are shown in Scheme 7.11. From an X-ray structural analysis, the phosphorus substituent was shown to act as a spectator, leaving its lone pair available to react in a Lewis basic manner. When carbene 31 was reacted with BF3, only the carbene adduct 32 was formed. By contrast, when 31 was reacted with the softer Lewis Acid BH3, it was the phosphorus that reacted to yield adduct 33. These types of carbenes exhibited C-NMR shifts in the range of 320-348 ppm, a P-C-N angle of 116.5° a short C-N distance of 1.296 A, and a long C-P distance of 1.856 A. The latter is very similar to that of a typical C-P single bond. [Pg.295]

The reaction of 151 with methanol to give dimethyl phosphate (154) or with N-methylaniline to form the phosphoramidate 155 and (presumably) the pyrophosphate 156 complies with expectations. The formation of dimethyl phosphate does not constitute, however, reliable evidence for the formation of intermediate 151 since methanol can also react with polymeric metaphosphates to give dimethyl phosphate. On the other hand, reaction of polyphosphates with N-methylaniline to give 156 can be ruled out (control experiments). The formation of 156 might encourage speculations whether the reaction with N,N-diethylaniline might involve initial preferential reaction of monomeric methyl metaphosphate via interaction with the nitrogen lone pair to form a phosphoric ester amide which is cleaved to phosphates or pyrophosphates on subsequent work-up (water, methanol). Such a reaction route would at least explain the low extent of electrophilic aromatic substitution by methyl metaphosphate. [Pg.110]

Ammonia reacts with boron trichloride to form a molecule called an adduct or Lewis acid base complex in which the lone pair on the ammonia molecule is shared with the boron atom to form a covalent bond and completing an octet on boron (Figure 1.16) ... [Pg.19]


See other pages where Lone pairs reacting with is mentioned: [Pg.44]    [Pg.44]    [Pg.190]    [Pg.425]    [Pg.89]    [Pg.207]    [Pg.224]    [Pg.252]    [Pg.163]    [Pg.47]    [Pg.287]    [Pg.199]    [Pg.395]    [Pg.772]    [Pg.777]    [Pg.900]    [Pg.17]    [Pg.35]    [Pg.166]    [Pg.168]    [Pg.185]    [Pg.257]    [Pg.311]    [Pg.122]    [Pg.150]    [Pg.153]    [Pg.56]    [Pg.227]    [Pg.621]    [Pg.863]    [Pg.951]    [Pg.621]    [Pg.13]    [Pg.340]    [Pg.134]    [Pg.84]   


SEARCH



Lewis acids reacting with lone pairs

Lone pairs

REACT

React with

© 2024 chempedia.info