Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

LLDPE density polyethylene

OLEFIN POLYTffiRS - POLYETHYLENE - LINEAR LOW DENSITY POLYETHYLENE] (Vol 17) LLDPE. See Linear low density polyethylene. [Pg.576]

Linear Low Density Polyethylene. Films from linear low density polyethylene (LLDPE) resias have 75% higher tensile strength, 50% higher elongation-to-break strength, and a slightly higher but broader heat-seal initiation temperature than do films from LDPE. Impact and puncture resistance are also improved over LDPE. Water-vapor and gas-permeation properties are similar to those of LDPE films. [Pg.452]

The majority of spunbonded fabrics are based on isotactic polypropylene and polyester (Table 1). Small quantities are made from nylon-6,6 and a growing percentage from high density polyethylene. Table 3 illustrates the basic characteristics of fibers made from different base polymers. Although some interest has been seen in the use of linear low density polyethylene (LLDPE) as a base polymer, largely because of potential increases in the softness of the final fabric (9), economic factors continue to favor polypropylene (see OlefinPOLYMERS, POLYPROPYLENE). [Pg.163]

The second type of solution polymerization concept uses mixtures of supercritical ethylene and molten PE as the medium for ethylene polymerization. Some reactors previously used for free-radical ethylene polymerization in supercritical ethylene at high pressure (see Olefin POLYMERS,LOW DENSITY polyethylene) were converted for the catalytic synthesis of LLDPE. Both stirred and tubular autoclaves operating at 30—200 MPa (4,500—30,000 psig) and 170—350°C can also be used for this purpose. Residence times in these reactors are short, from 1 to 5 minutes. Three types of catalysts are used in these processes. The first type includes pseudo-homogeneous Ziegler catalysts. In this case, all catalyst components are introduced into a reactor as hquids or solutions but form soHd catalysts when combined in the reactor. Examples of such catalysts include titanium tetrachloride as well as its mixtures with vanadium oxytrichloride and a trialkyl aluminum compound (53,54). The second type of catalysts are soHd Ziegler catalysts (55). Both of these catalysts produce compositionaHy nonuniform LLDPE resins. Exxon Chemical Company uses a third type of catalysts, metallocene catalysts, in a similar solution process to produce uniformly branched ethylene copolymers with 1-butene and 1-hexene called Exact resins (56). [Pg.400]

LDPE = low density polyethylene LLDPE = linear low density polyethylene HDPE = high density polyethylene PP = polypropylene PVC = polyvinyl chloride PS = polystyrene ABS = polyacrylonitrile-butadiene-styrene. [Pg.326]

The principal use of LDPE and LLDPE in building products is as a film water barrier under below-grade doors as a wall vapor barrier, though PVC is typically preferred and as temporary enclosure film during constmction. The film is made either by extmding a thin-waHed tube, which may be sHt or wound up direcdy, or by extmsion through a slot die and cast direcdy on to a cold roU, cooled, then wound up. The former method is more widely used. A much smaller use for low density polyethylene is in piping. [Pg.327]

Polybutenes enjoy extensive use as adhesives, caulks, sealants, and glaring compounds. They are used as plasticizers in mbber formulations with butyl mbber, SBR, and natural mbber. In linear low density polyethylene (LLDPE) blends they induce cling to stretch-wrap films. Polybutenes when modified at their unsaturated end groups with polar fiinctionahty are widely employed in lubricants as dispersants. Blends of polybutene with polyolefins produce semisoHd gels that can be used as potting and electrical cable filling materials. [Pg.487]

In order to improve the physical properties of HDPE and LDPE, copolymers of ethylene and small amounts of other monomers such as higher olefins, ethyl acrylate, maleic anhydride, vinyl acetate, or acryUc acid are added to the polyethylene. Eor example, linear low density polyethylene (LLDPE), although linear, has a significant number of branches introduced by using comonomers such as 1-butene or 1-octene. The linearity provides strength, whereas branching provides toughness. [Pg.432]

At the end of the 1970s considerable interest developed in what became known as linear low density polyethylenes (LLDPE) which are intermediate in properties and structure to the high pressure and low pressure materials. While strictly speaking these are copolymers it is most convenient to consider them alongside the homopolymers. The LLDPE materials were rapidly accepted by industry particularly in the manufacture of film. The very low density polyethylenes (VLDPE) introduced by Union Carbide in 1985 were closely related. [Pg.206]

Metallocene-catalysed very low density polyethylene (m-VLDPE) has become available with densities of as low as 0.903. This is of use for sealing layers of multi-layer films since sealing can commence at lower temperatures than with conventional materials such as LLDPE and EVA (see Section 11.6) with the polymer seal exhibiting both cold strength and hot tack strength. [Pg.228]

Resins and plastics such as low-density polyethylene (LDPE), high-density polyethylene (HOPE), linear low-density polyethylene (LLDPE), polypropylene, polystyrene, and polyvinyl chloride (PVC) ... [Pg.54]

Dimerization of ethylene to butene-1 has been developed recently by using a selective titanium-based catalyst. Butene-1 is finding new markets as a comonomer with ethylene in the manufacture of linear low-density polyethylene (LLDPE). [Pg.206]

The three isomers constituting n-hutenes are 1-hutene, cis-2-hutene, and trans-2-hutene. This gas mixture is usually obtained from the olefinic C4 fraction of catalytic cracking and steam cracking processes after separation of isobutene (Chapter 2). The mixture of isomers may be used directly for reactions that are common for the three isomers and produce the same intermediates and hence the same products. Alternatively, the mixture may be separated into two streams, one constituted of 1-butene and the other of cis-and trans-2-butene mixture. Each stream produces specific chemicals. Approximately 70% of 1-butene is used as a comonomer with ethylene to produce linear low-density polyethylene (LLDPE). Another use of 1-butene is for the synthesis of butylene oxide. The rest is used with the 2-butenes to produce other chemicals. n-Butene could also be isomerized to isobutene. ... [Pg.238]

Linear low-density polyethylene (LLDPE) is produced in the gas phase under low pressure. Catalysts used are either Ziegler type or new generation metallocenes. The Union Carbide process used to produce HDPE could be used to produce the two polymer grades. Terminal olefins (C4-C6) are the usual comonomers to effect branching. [Pg.328]

Currently, high density polyethylene is the largest-volume thermoplastic. The 1997 U.S. production of HDPE was 12.5 billion pounds. LDPE was 7.7 billion pounds and LLDPE was 6.9 billion pounds. [Pg.328]


See other pages where LLDPE density polyethylene is mentioned: [Pg.125]    [Pg.211]    [Pg.283]    [Pg.402]    [Pg.402]    [Pg.539]    [Pg.568]    [Pg.759]    [Pg.766]    [Pg.986]    [Pg.1071]    [Pg.1083]    [Pg.378]    [Pg.76]    [Pg.329]    [Pg.371]    [Pg.371]    [Pg.403]    [Pg.432]    [Pg.441]    [Pg.431]    [Pg.434]    [Pg.438]    [Pg.186]    [Pg.520]    [Pg.327]    [Pg.495]    [Pg.227]    [Pg.228]    [Pg.945]    [Pg.12]    [Pg.589]    [Pg.155]    [Pg.158]    [Pg.278]   


SEARCH



LLDPE (See Linear low-density polyethylene

Linear low-density polyethylene LLDPE)

Low-density polyethylene LLDPE

Polyethylene LLDPE

Polyethylene density

© 2024 chempedia.info