Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium, reduction dioxan

Lithium hydride is perhaps the most usehil of the other metal hydrides. The principal limitation is poor solubiUty, which essentially limits reaction media to such solvents as dioxane and dibutyl ether. Sodium hydride, which is too insoluble to function efficiently in solvents, is an effective reducing agent for the production of silane when dissolved in a LiCl—KCl eutectic at 348°C (63—65). Magnesium hydride has also been shown to be effective in the reduction of chloro- and fluorosilanes in solvent systems (66) and eutectic melts (67). [Pg.23]

Aromatic steroids are virtually insoluble in liquid ammonia and a cosolvent must be added to solubilize them or reduction will not occur. Ether, ethylene glycol dimethyl ether, dioxane and tetrahydrofuran have been used and, of these, tetrahydrofuran is the preferred solvent. Although dioxane is often a better solvent for steroids at room temperature, it freezes at 12° and its solvent effectiveness in ammonia is diminished. Tetrahydrofuran is infinitely miscible with liquid ammonia, but the addition of lithium to a 1 1 mixture causes the separation of two liquid phases, one blue and one colorless, together with the separation of a lithium-ammonia bronze phase. Thus tetrahydrofuran and lithium depress the solubilities of each other in ammonia. A tetrahydrofuran-ammonia mixture containing much over 50 % of tetrahydrofuran does not become blue when lithium is added. In general, a 1 1 ratio of ammonia to organic solvents represents a reasonable compromise between maximum solubility of steroid and dissolution of the metal with ionization. [Pg.25]

Toluene is a useful co-solvent in metal-ammonia reductions as first reported by Chapman and his colleagues. The author has found that a toluene-tetrahydrofuran-ammonia mixture (1 1 2) is a particularly useful medium for various metal-ammonia reductions. Procedure 8a (section V) describes the reduction of 17-ethyl-19-nortestosterone in such a system. Ethylene dibromide is used to quench excess lithium. Trituration of the total crude reduction product with methanol affords an 85% yield of 4,5a-dihydro-17-ethyl-19-nortestosterone, mp 207-213° (after sintering at 198°), reported mp 212-213°. For the same reduction using Procedure 5 (section V), Bowers et al obtained a 60% yield of crude product, mp, 196-199°, after column chromatography of the total reduction product. A similar reduction of 17-ethynyl-19-nortestosterone is described in Procedure 8b (section V). The steroid concentration in the toluene-tetrahydrofuran-ammonia system is 0.05 M whereas in the ether-dioxane-ammonia system it is 0.029 M. [Pg.44]

The isotopic purity of the products from a lithium aluminum deuteride reduction is usually equivalent to that of the reagent. The presence of moisture has little effect on the isotope composition of the products, causing only the decomposition of some of the reagent. For the best results, however, it is advisable to distill the solvent— usually ether, tetrahydrofuran or dioxane depending on the desired reaction temperature—from lithium aluminum hydride directly into the reaction flask. In this manner the reduction of 3-keto-5a-steroids (60), for example, gives the corresponding 3a-di alcohols (61) in 98% isotopic purity. ... [Pg.162]

As a general procedure, a mixture of the steroidal ketone (50 mg) and lithium aluminum deuteride (20 mg) in dry ether (5 ml, freshly distilled from lithium aluminum hydride) is heated under reflux until the reduction is complete according to thin layer chromatography test. The excess deuteride is then decomposed by the careful addition of a few drops of water and the reaction mixture is worked up by the usual procedure. For hindered ketones or esters the use of other solvents, such as tetrahydrofuran or dioxane, may be preferable to allow higher reaction temperatures. [Pg.164]

Reductive Opening of a 17a,20-Epoxide 17a,20-Oxidopregn-4-en-3-one (0.7 g) in 90 ml of dioxane (previously distilled over sodium) is added gradually to a solution of 1 g of lithium aluminum hydride in 50 ml of dry ether. [Pg.164]

The lithium cnolate generated by deprotonation of 2-/m-butyl-6-methyl-l,3-dioxan-4-onc, readily available from polyhydroxybutyric acid (PHB), predominantly affords the diastereo-mers 7 when reacted with aldehydes. The diastereomeric ratios of aldol adducts 7/8, produced by reactions with aliphatic aldehydes, range from 87.5 12.5 to >99 1. Pure diastereoiners7are obtained by recrystallization in 25-74% yield116-118. Only marginal diastereoselectivities with respect to the carbinol center are obtained with aromatic aldehydes111-119. Benzoylation of the dioxanones 7, followed by reduction with lithium aluminum hydride, affords enan-tiomerically and diastereomerically pure triols 9 in >85% yield 11. ... [Pg.512]

It is intriguing to note that this reaction scheme for the reduction of a sulphone to a sulphide leads to the same reaction stoichiometry as proposed originally by Bordwell in 1951. Which of the three reaction pathways predominates will depend on the relative activation barriers for each process in any given molecule. All are known. Process (1) is preferred in somewhat strained cyclic sulphones (equations 22 and 24), process (2) occurs in the strained naphtho[l, 8-hc]thiete 1,1-dioxide, 2, cleavage of which leads to a reasonably stabilized aryl carbanion (equation 29) and process (3) occurs in unstrained sulphones, as outlined in equations (26) to (28). Examples of other nucleophiles attacking strained sulphones are in fact known. For instance, the very strained sulphone, 2, is cleaved by hydride from LAH, by methyllithium in ether at 20°, by sodium hydroxide in refluxing aqueous dioxane, and by lithium anilide in ether/THF at room temperature. In each case, the product resulted from a nucleophilic attack at the sulphonyl sulphur atom. Other examples of this process include the attack of hydroxide ion on highly strained thiirene S, S-dioxides , and an attack on norbornadienyl sulphone by methyllithium in ice-cold THF . ... [Pg.939]

The reduction of the preformed tosylhydrazones with sodium borohydride may be effected in aprotic solvents, such as tetrahydrofuran or dioxane. The use of lithium aluminium hydride in nonhydroxylic solvents permits the reduction of aromatic aldehydes and ketones. [Pg.63]

Dialkoxymethyllithium compounds, for example 2-lithio-l,3-dioxan (311), are generated in situ as shown in equation 69, either by reductive lithiation of a phenyl thioether with a lithium arene or by transmetallation of the corresponding trialkylstannyl compound. Subsequent quenching with electrophiles leads to the usual alkylated or functionalized species ... [Pg.392]

The corresponding benzylic reductive cleavage was carried out using aryl-substituted 1,3-dioxanes 419, lithium and a catalytic amount of naphthalene (10%) in THF at temperatures ranging from —78 to —40°C. The obtained benzylic intermediates 420 were then treated with different electrophiles giving, after hydrolysis, the corresponding products 421 (Scheme 118) 3,i94... [Pg.715]

Another type of heterocycle containing two heteroatoms susceptible of being cleaved reductively are 1,3-dioxanes or 1,3-oxathianes 422. They were treated with lithium and a catalytic amount of DTBB (4.5%) in THF at room temperature (Y = O) or at —78 °C (Y = S) to yield, after hydrolysis with water, functionalized homobenzylic alcohols 425 (Scheme 119) . The participation of intermediates 423 and 424 has been postulated in order to explain the obtained results. [Pg.715]

The NMR spectra and dipole moments of l,2,4-triazole-3-thiones support their meso-ionic formulation (227). For example, the compound (227, R = Me, R = R = Ph) has a dipole moment of 9.1 D in dioxan solution. The effect of solvent polarity upon the ultraviolet and visible spectra of the triphenyl derivative (227, R = R = R = Ph) has been reported but no direct interpretation was made. The meso-ionic l,2,4-triazole-3-thiones (227) form hydrochlorides (234, R = H, X = Cl) and methiodides (234, R = Me, X = I) they yield 1,2,4-triazolidine-3-thiones by lithium aluminum hydride reduction. ... [Pg.49]

Reduction of 62 by lithium aluminum hydride in hot dioxane, or by hexachlorodisiiane in chloroform, gives 7 the latter reagent likewise converts 63 and 66 to the corresponding 2//-imidazoles. 2f/-Imidazoles are also formed by sodium borohydride reduction of 64 and 65, although this reagent has no effect on 62 and 63. ... [Pg.389]

The reduction of tosylhydrazones can also be performed with sodium borodeuteride in boiling methanol or dioxane, but the mechanism of this reaction (in boiling dioxane at least) is radically different from that of the lithium aluminum deuteride reductions.82 With sodium borohydride the first step is apparently hydride attack on the carbon atom of the C=N bond which is probably concerted with the elimination of the tosylate anion (110 - 111). Migration of the hydrogen from nitrogen to C-3 in (111) concerted with expulsion of nitrogen, provides the corresponding methylene derivative (100).82... [Pg.97]


See other pages where Lithium, reduction dioxan is mentioned: [Pg.30]    [Pg.176]    [Pg.105]    [Pg.117]    [Pg.939]    [Pg.219]    [Pg.89]    [Pg.117]    [Pg.259]    [Pg.383]    [Pg.96]    [Pg.167]    [Pg.791]    [Pg.800]    [Pg.880]    [Pg.338]    [Pg.122]    [Pg.644]    [Pg.353]    [Pg.96]    [Pg.8]    [Pg.151]    [Pg.447]    [Pg.225]    [Pg.260]    [Pg.349]    [Pg.61]    [Pg.183]    [Pg.194]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



1,3-Dioxanes reduction

Lithium reductions

© 2024 chempedia.info