Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium enzyme

Dinitrogen has a dissociation energy of 941 kj/mol (225 kcal/mol) and an ionisation potential of 15.6 eV. Both values indicate that it is difficult to either cleave or oxidize N2. For reduction, electrons must be added to the lowest unoccupied molecular orbital of N2 at —7 eV. This occurs only in the presence of highly electropositive metals such as lithium. However, lithium also reacts with water. Thus, such highly energetic interactions ate unlikely to occur in the aqueous environment of the natural enzymic system. Even so, highly reducing systems have achieved some success in N2 reduction even in aqueous solvents. [Pg.91]

Modulation of second-messenger pathways is also an attractive target upon which to base novel antidepressants. Rolipram [61413-54-5] an antidepressant in the preregistration phase, enhances the effects of noradrenaline though selective inhibition of central phosphodiesterase, an enzyme which degrades cycHc adenosiae monophosphate (cAMP). Modulation of the phosphatidyl iaositol second-messenger system coupled to, for example, 5-HT,, 5-HT,3, or 5-HT2( receptors might also lead to novel antidepressants, as well as to alternatives to lithium for treatment of mania. Novel compounds such as inhibitors of A-adenosyl-methionine or central catechol-0-methyltransferase also warrant attention. [Pg.234]

High yields of optically active cyanohydrins have been prepared from hydrogen cyanide and carbonyl compounds using an enzyme as catalyst. Reduction of these optically active cyanohydrins with lithium aluminum hydride in ether affords the corresponding substituted, optically active ethanolamine (5) (see Alkanolamines). [Pg.411]

Effenberger and coworkers have utilized the tolerance of methyl ketones by the recombinant enzyme to develop an alternative synthesis of tetronic acids and their amino derivatives, as shown in Figure 5.18. Treatment of O-acyl cyanohydrins with lithium disilazide resulted in base-induced ring closure to amino tetronic acid derivatives. Alternatively, the cyanohydrins could be converted to a-hydroxy esters prior to acylation, and the same base-induced cyclization then led to tetronic acid derivatives [89]. [Pg.119]

The first two antidepressants, iproniazid and imipramine, were developed in the same decade. They were shown to reverse the behavioural and neurochemical effects of reserpine in laboratory rodents, by inhibiting the inactivation of these monoamine transmitters (Leonard, 1985). Iproniazid inhibits MAO (monoamine oxidase), an enzyme located in the presynaptic neuronal terminal which breaks down NA, 5-HT and dopamine into physiologically inactive metabolites. Imipramine inhibits the reuptake of NA and 5-HT from the synaptic cleft by their transporters. Therefore, both of these drugs increase the availability of NA and 5-HT for binding to postsynaptic receptors and, therefore, result in enhanced synaptic transmission. Conversely, lithium, the oldest but still most frequently used mood stabiliser (see below), decreases synaptic NA (and possibly 5-HT) activity, by stimulating their reuptake and reducing the availability of precursor chemicals required in the biosynthesis of second messengers. [Pg.174]

Several independent laboratories have now demonstrated that both lithium and valproate (VPA) exert complex, isozyme-specific effects on the PKC (protein kinase C) signaling cascade (reviewed in [3, 5, 11-13]). Not surprisingly, considerable research has recently attempted to identify changes in the activity of transcription factors known to be regulated (at least in part) by the PKC signaling pathway - in particular the activator protein 1 (AP-1) family of transcription factors. In the CNS, the genes that are regulated by AP-1 include those for various neuropeptides, neurotrophins, receptors, transcription factors, enzymes involved in neurotransmitter synthesis, and proteins that bind to cytoskeletal elements [14]. [Pg.400]

To date, there have only been a limited number of studies directly examining PKC in bipolar disorders [77], Although undoubtedly an oversimplification, particulate (membrane) PKC is sometimes viewed as the more active form of PKC, and thus an examination of the subcellular partitioning of this enzyme can be used as an index of the degree of activation. Friedman etal. [78] investigated PKC activity and PKC translocation in response to serotonin in platelets obtained from bipolar-disorder patients before and during lithium treatment. They reported that the ratios of platelet-membrane-bound to cytosolic PKC activities were elevated in the manic patients. In addition, serotonin-elicited platelet PKC translocation was found to be enhanced in those patients. With respect to brain tissue, Wang and Friedman [74] measured PKC isozyme levels, activity and translocation in postmortem brain tissue from patients with bipolar disorder, and reported increased PKC activity and translocation in the brains of bipolar patients compared with controls, effects which were accompanied by elevated levels of selected PKC isozymes in cortices of bipolar disorder patients. [Pg.897]

Inositol monophosphatase catalyzes the hydrolysis of inositol-1-phosphate, inositol-4-phosphate, and various nucleoside 2 -phosphates. The enzyme has attracted considerable interest in recent years because it is believed to be an important target for lithium therapy in treatment of manic-depression. Inositol monophosphatase inhibited in the presence... [Pg.214]

The present volume is the fourth in the series and covers the topics lithium in biology, the structure and function of ceruloplasmin, rhenium complexes in nuclear medicine, the anti-HIV activity of macrocyclic polyamines and their metal complexes, platinum anticancer dmgs, and functional model complexes for dinuclear phosphoesterase enzymes. The production of this volume has been overshadowed by a very sad event—the passing away of the senior editor, Professor Robert W. Hay. It was he who conceived the idea of producing this series and who more than anyone else has been responsible for its continuation. A tribute by one of his many friends, Dr. David Richens, is included in this Volume. [Pg.264]

The most potentially serious drug interactions include the concomitant use of NSAIDs with lithium, warfarin, oral hypoglycemics, high-dose methotrexate, antihypertensives, angiotensin-converting enzyme inhibitors, fi-blockers, and diuretics. [Pg.28]

Lithium(I) ions are small but strongly hydrated and could interfere with Mg(II) biochemistry. However, the favored mode of action is interference with Ca(II) metabolism via inhibition of enzymes in the inositol phosphate pathways (470-472). Inositol phosphates are responsible for mobilizing Ca(II) inside cells in response to external stimnlii. Lithium also stimulates glutamate release presumably via activation of the AT-methyl-D-asparate receptor and leads to Ca(II) entry (473). The increased influx of intracellular Ca(II) may activate phospholipase C and stimulate accumulation of inositol 1,4,5-triphosphate (473). [Pg.262]

Lithium can selectively inhibit the activity of glycogen synthase kinase-3 6 (GSK-3 ji), an enzyme which regulates cell fate determina-... [Pg.262]

Fig. 22. A model for the interaction of Li(I) with the enzyme inositol monophosphatase. Lithium(I) occupies the second Mg(II) site in the enzyme. Adapted from (479). [Pg.263]

A second well characterized signal transduction pathway, which is subject to lithium inhibition, is the phosphoinositol cascade (see Chapter 11, in particular Figure 11.8). A number of enzymes of this pathway contain a common amino acid sequence that constitutes a lithium-sensitive Mg2+ binding site, and it has been proposed that lithium exerts some of... [Pg.340]

Encephalopathic syndrome - An encephalopathic syndrome (characterized by weakness, lethargy, fever, tremulousness, confusion, extrapyramidal symptoms, leukocytosis, elevated serum enzymes, blood urea nitrogen, fasting blood sugar) has occurred in a few patients treated with lithium plus an antipsychotic (haloperidol). [Pg.1101]


See other pages where Lithium enzyme is mentioned: [Pg.77]    [Pg.2]    [Pg.810]    [Pg.809]    [Pg.7]    [Pg.673]    [Pg.509]    [Pg.564]    [Pg.597]    [Pg.886]    [Pg.161]    [Pg.59]    [Pg.368]    [Pg.865]    [Pg.262]    [Pg.382]    [Pg.340]    [Pg.340]    [Pg.583]    [Pg.125]    [Pg.199]    [Pg.268]    [Pg.26]    [Pg.202]    [Pg.203]    [Pg.237]    [Pg.15]    [Pg.174]    [Pg.667]    [Pg.1350]    [Pg.269]    [Pg.273]    [Pg.428]    [Pg.50]   
See also in sourсe #XX -- [ Pg.480 ]




SEARCH



Angiotensin-converting enzyme with lithium

Lithium angiotensin converting enzyme

© 2024 chempedia.info