Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid-solid-solution reaction system

In a liquid-solid (L-S) system, a heterogeneous (or heterogenized) catalyst is used to promote a reaction in solution. This can be run in batch or in continuous-flow, and there are numerous examples of reactions done in an L-S system. [Pg.132]

Subject areas for the Series include solutions of electrolytes, liquid mixtures, chemical equilibria in solution, acid-base equilibria, vapour-liquid equilibria, liquid-liquid equilibria, solid-liquid equilibria, equilibria in analytical chemistry, dissolution of gases in liquids, dissolution and precipitation, solubility in cryogenic solvents, molten salt systems, solubility measurement techniques, solid solutions, reactions within the solid phase, ion transport reactions away from the interface (i.e. in homogeneous, bulk systems), liquid crystalline systems, solutions of macrocyclic compounds (including macrocyclic electrolytes), polymer systems, molecular dynamic simulations, structural chemistry of liquids and solutions, predictive techniques for properties of solutions, complex and multi-component solutions applications, of solution chemistry to materials and metallurgy (oxide solutions, alloys, mattes etc.), medical aspects of solubility, and environmental issues involving solution phenomena and homogeneous component phenomena. [Pg.10]

For a liquid-solid catalytic reaction the common technique for determining the adsorbed amount of a species dissolved in the solution is that of performing experiments in a batch not-reacting system and of measuring ... [Pg.4]

Many gas-liquid-solid multiphase reactions, such as the hydration of propene, catalytic hydrogenation of nitrate, chloroform dehalogenation, and H2O2 synthesis by H2 + O2 reaction in solution, are generally limited by the diffusion of the volatile reactant. Retention of homogeneous catalysts and efficient gas-liquid mass transfer are the key properties of such reaction systems. Both can be well achieved in the contactor-type MRs. [Pg.65]

This interface is critically important in many applications, as well as in biological systems. For example, the movement of pollutants tln-ough the enviromnent involves a series of chemical reactions of aqueous groundwater solutions with mineral surfaces. Although the liquid-solid interface has been studied for many years, it is only recently that the tools have been developed for interrogating this interface at the atomic level. This interface is particularly complex, as the interactions of ions dissolved in solution with a surface are affected not only by the surface structure, but also by the solution chemistry and by the effects of the electrical double layer [31]. It has been found, for example, that some surface reconstructions present in UHV persist under solution, while others do not. [Pg.314]

Binary Alloys. Aluminum-rich binary phase diagrams show tliree types of reaction between liquid alloy, aluminum solid solution, and otlier phases eutectic, peritectic, and monotectic. Table 16 gives representative data for reactions in tlie systems Al—Al. Diagrams are shown in Figures 10—19. Compilations of phase diagrams may be found in reference 41. [Pg.107]

The effect of physical processes on reactor performance is more complex than for two-phase systems because both gas-liquid and liquid-solid interphase transport effects may be coupled with the intrinsic rate. The most common types of three-phase reactors are the slurry and trickle-bed reactors. These have found wide applications in the petroleum industry. A slurry reactor is a multi-phase flow reactor in which the reactant gas is bubbled through a solution containing solid catalyst particles. The reactor may operate continuously as a steady flow system with respect to both gas and liquid phases. Alternatively, a fixed charge of liquid is initially added to the stirred vessel, and the gas is continuously added such that the reactor is batch with respect to the liquid phase. This method is used in some hydrogenation reactions such as hydrogenation of oils in a slurry of nickel catalyst particles. Figure 4-15 shows a slurry-type reactor used for polymerization of ethylene in a sluiTy of solid catalyst particles in a solvent of cyclohexane. [Pg.240]

Each stage of particle formation is controlled variously by the type of reactor, i.e. gas-liquid contacting apparatus. Gas-liquid mass transfer phenomena determine the level of solute supersaturation and its spatial distribution in the liquid phase the counterpart role in liquid-liquid reaction systems may be played by micromixing phenomena. The agglomeration and subsequent ageing processes are likely to be affected by the flow dynamics such as motion of the suspension of solids and the fluid shear stress distribution. Thus, the choice of reactor is of substantial importance for the tailoring of product quality as well as for production efficiency. [Pg.232]

The yellow disulfide radical anion and the briUiant blue trisulfide radical anion often occur together for what reason some authors of the older Hterature (prior to 1975) got mixed up with their identification. Today, both species are well known by their E8R, infrared, resonance Raman, UV-Vis, and photoelectron spectra, some of which have been recorded both in solutions and in solid matrices. In solution these radical species are formed by the ho-molytic dissociation of polysulfide dianions according to Eqs. (7) and (8). 8ince these dissociation reactions are of course endothermic the radical formation is promoted by heating as well as by dilution. Furthermore, solvents of lower polarity than that of water also favor the homolytic dissociation. However, in solutions at 20 °C the equilibria at Eqs. (7) and (8) are usually on the left side (excepting extremely dilute systems) and only the very high sensitivity of E8R, UV-Vis and resonance Raman spectroscopy made it possible to detect the radical anions in liquid and solid solutions see above. [Pg.145]

Pressure measurements can be accomplished by any one of a number of different types of manometric devices without disturbing the system being observed. Another type of reaction system that can be monitored by pressure measurements is one in which one of the products can be quantitatively removed by a solid or liquid reagent that does not otherwise affect the reaction. For example, acids formed by reactions in the gas phase can be removed by absorption in hydroxide solutions. [Pg.39]

A further method of producing amorphous phases is by a strain-driven solid-state reaction (Blatter and von Allmen 1985, 1988, Blatter et al. 1987, Gfeller et al. 1988). It appears that solid solutions of some transition metal-(Ti,Nb) binary systems, which are only stable at high temperatures, can be made amorphous. This is done by first quenching an alloy to retain the high-temperature solid solution. The alloy is then annealed at low temperatures where the amorphous phase appears transiently during the decomposition of the metastable crystalline phase. The effect was explained by the stabilisation of the liquid phase due to the liquid—>glass... [Pg.436]

These reactions are unlike any we have encountered so far. They are heterogeneous reactions, which means that the reacting system consists of two or more phases. Usually, the metal catalyst is present as a finely divided solid suspension in the liquid or solution to be reduced. Alternatively, the metal is deposited on an inert solid support such as carbon, barium sulfate, alumina (A1203), or calcium carbonate. Then the mixture of the liquid substrate and solid catalyst is shaken or stirred in a hydrogen atmosphere. However, the actual reaction takes place at the surface of the metal catalyst and is an example of heterogeneous or surface catalysis. [Pg.411]

Linschitz and Rennert (80) showed that the chlorophyll photobleaching reaction was not restricted to liquid systems. They observed a similar rapid reversible photobleaching of chlorophyll a in a solid solution of ether iso pentane alcohol at liquid nitrogen temperature. A mechanism involving either electron or hydrogen transfer was postulated as the initial step. Although further identification of the intermediates is necessary, it appears likely that a one-electron redox reaction is at least involved in the primary process. [Pg.296]

Chemical kinetics deductions are, in some circumstances, possible from a reaction system using a dispersed solid. If the solid is entirely insoluble, for example a supported catalyst, true surface kinetics can be obtained provided (i) it can be shown that the chemical reaction on the surface is much slower than the associated mass transfer, and (ii) the surface area of the solid can be obtained. These conditions applied in the case of the oxidation of an aqueous solution of hydrazine using a dispersion of insoluble barium chromate [16]. Another case is where it can be shown that an increase in the amount of the solid component does not increase the reaction rate. In this case, exemplified by the formation of benzyl acetate from benzyl bromide and solid sodium acetate in toluene solvent, it is likely that the reaction occurs in the solution phase and that the reaction is proceeding at the saturation concentration of the solid reactant in the liquid phase [17]. [Pg.115]

The best-studied were two film systems the chlorination reaction in a solid solution of Cl2 in BC and the copolymerization reaction of sulfur dioxide with isoprene. Under the above-described conditions of cooling, the liquid films in both systems vitrified. [Pg.365]


See other pages where Liquid-solid-solution reaction system is mentioned: [Pg.85]    [Pg.170]    [Pg.226]    [Pg.1828]    [Pg.1359]    [Pg.325]    [Pg.95]    [Pg.119]    [Pg.87]    [Pg.102]    [Pg.286]    [Pg.345]    [Pg.333]    [Pg.165]    [Pg.146]    [Pg.2]    [Pg.195]    [Pg.196]    [Pg.182]    [Pg.7]    [Pg.265]    [Pg.265]    [Pg.9]    [Pg.342]    [Pg.192]    [Pg.105]    [Pg.5]    [Pg.127]    [Pg.407]    [Pg.205]    [Pg.89]    [Pg.20]    [Pg.41]    [Pg.213]   
See also in sourсe #XX -- [ Pg.226 ]




SEARCH



Liquid-solid systems,

Solid reaction system

Solid systems

Solid-liquid reactions

Solid-liquid solutions

Solid-liquid systems system

Solution systems

© 2024 chempedia.info