Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid flow effect

Estimate the flood point from Figure 8-137, which accounts for liquid flow effects and is a ratio of liq-uid/vapor kinetic effects [79]. Flooding velocity is obtained from... [Pg.188]

M. Muradoglu, Axial Dispersion in Segmented Gas-Liquid Flow Effects of Channel Curvature, preprint to be submitted (2009). [Pg.241]

Related phenomena are electro-osmosis, where a liquid flows past a surface under the influence of an electric field and the reverse effect, the streaming potential due to the flow of a liquid past a charged surface. [Pg.2674]

If a gas flows over the surface of a liquid, certain effects ensue. Only the relative velocity of the liquid surface and gas is important in giving rise to nebulization. Thus, some pneumatic nebulizers... [Pg.139]

The drop in pressure when a stream of gas or liquid flows over a surface can be estimated from the given approximate formula if viscosity effects are ignored. The example calculation reveals that, with the sorts of gas flows common in a concentric-tube nebulizer, the liquid (the sample solution) at the end of the innermost tube is subjected to a partial vacuum of about 0.3 atm. This vacuum causes the liquid to lift out of the capillary, where it meets the flowing gas stream and is broken into an aerosol. For cross-flow nebulizers, the vacuum created depends critically on the alignment of the gas and liquid flows but, as a maximum, it can be estimated from the given formula. [Pg.141]

Flows are typically considered compressible when the density varies by more than 5 to 10 percent. In practice compressible flows are normally limited to gases, supercritical fluids, and multiphase flows containing gases. Liquid flows are normally considerea incompressible, except for certain calculations involved in hydraulie transient analysis (see following) where compressibility effects are important even for nearly incompressible hquids with extremely small density variations. Textbooks on compressible gas flow include Shapiro Dynamics and Thermodynamics of Compre.ssible Fluid Flow, vol. 1 and 11, Ronald Press, New York [1953]) and Zucrow and Hofmann (G .s Dynamics, vol. 1 and 11, Wiley, New York [1976]). [Pg.648]

Three examples of simple multivariable control problems are shown in Fig. 8-40. The in-line blending system blends pure components A and B to produce a product stream with flow rate w and mass fraction of A, x. Adjusting either inlet flow rate or Wg affects both of the controlled variables andi. For the pH neutrahzation process in Figure 8-40(Z ), liquid level h and the pH of the exit stream are to be controlled by adjusting the acid and base flow rates and w>b. Each of the manipulated variables affects both of the controlled variables. Thus, both the blending system and the pH neutralization process are said to exhibit strong process interacHons. In contrast, the process interactions for the gas-liquid separator in Fig. 8-40(c) are not as strong because one manipulated variable, liquid flow rate L, has only a small and indirec t effect on one controlled variable, pressure P. [Pg.736]

Cavitation has three negative side effects in valves—noise and vibration, material removal, and reduced flow. The bubble-collapse process is a violent asymmetrical implosion that forms a high-speed microjet and induces pressure waves in the fluid. This hydrodynamic noise and the mechanical vibration that it can produce are far stronger than other noise-generation sources in liquid flows. If implosions occur adjacent to a solid component, minute pieces of material can be removed, which, over time, will leave a rough, cinderlike surface. [Pg.789]

In concentrated wstems the change in gas aud liquid flow rates within the tower and the heat effects accompanying the absorption of all the components must be considered. A trial-aud-error calculation from one theoretical stage to the next usually is required if accurate results are to be obtained, aud in such cases calculation procedures similar to those described in Sec. 13 normally are employed. A computer procedure for multicomponent adiabatic absorber design has been described by Feiutnch aud Treybal [Jnd. Eng. Chem. Process Des. Dev., 17, 505 (1978)]. Also see Holland, Fundamentals and Modeling of Separation Processes, Prentice Hall, Englewood Cliffs, N.J., 1975. [Pg.1361]

Ejfects of Gas and Liquid Mixing As noted previously, it is necessary in most instances to convert point efficiency E g to Murphree plate efficiency E, ,. This is true because of incomplete mixing only in small laboratoiy or pilot-plant columns, under special conditions, is the assumption E g = E, , likely to be valid. For a crossflow plate with no hquid mixing there is plug flow of hquid. For this condition of liquid flow, Lewis [Ind. Eng. Chem., 28, 399 (1936)] analyzed effects of gas mixing on efficiency. He considered three cases ... [Pg.1382]

An important practical question is, what is the representative pipe diameter in loading circuits comprising different sizes of pipe This has a large effect on the values calculated for velocity and velocity-diameter product. As an example, static ignition of ester mist in a rail car (5-1.3.1) involved 1450 gpm through a 6-in. pipe (v = 5 m/s and vd = 0.76 mVs) followed by a short 4-in. dip pipe assembly (y = 11 m/s and vd = 1.15 mVs). Were nonconductive liquid flow rate restrictions applied to the semiconductive ester (time constant —0.01 s) involved in this fire, the flow rate based on the 4-in. pipe would be unacceptably large based either on a 7 m/s maximum velocity or a 0.80 mVs maximum vd product. However, based on the 6-in. pipe upstream the flow velocity is less than 7 m/s and also meets API s vd < 0.80 mVs criterion. [Pg.109]

In this section incompressible liquid flow is dealt with, and the effect of compressibility is ignored. [Pg.51]

The above is valid for a liquid flow, when the effect of compressibility can be ignored when calculating gas flows with small pressure differences. For instance, in ventilating duct work, air is not compressed, so the density is considered as constant. In HVAC technology a unit of pressure frequently used for convenience is a water column millimeter, 1 mm H.O=10Pa. [Pg.58]

Note Cavitation occurs when the pressure at a point in a liquid flow field is equal or less than the vapor pressure of the liquid. At this point bubbles of vapor are formed, this is cavitation. It has serious effects such... [Pg.62]

W = required vapor capacity in pounds per hour, or any flow rate in pounds per hour, vapor relief rate to flare stack, Ibs/hr W(. = charge weight of explosive, lb Wj. = effective charge weight, pounds of TNT for estimating surface burst effects in free air W, = required steam capacity flow or rate in pounds per hour, or other flow rate, Ib/hr Whe = hydrocarbon to be flared, Ibs/hr Wtnt equivalent charge weight of TNT, lb Wl = liquid flow rate, gal per min (gpm)... [Pg.539]

Sakata [180] evaluates the degree of mixing of the liquid as it flows across a tray and its effect on the tray efficiency, Figure 8-30. For plug flow the liquid flows across the tray with no mixing, while for partial or spot mixing as it flow s over the tray, an improved tray efficiency can be expected. For a completely mixed tray liquid, the point efficiency for a small element of the tray, Eog> tray efficiency, E V, are equal. [Pg.45]

Vapor rises up through risers or up-takes into bubble cap, out through slots as bubbles into surrounding liquid on tray. Bubbling action effects contact. Liquid flows over caps, outlet weir and downcomer to tray below. Figures 8-63-67, 79, and 81. [Pg.122]

Holes spaced closer than twice the hole diameter lead to unstable operation. The recommended spacing is 2.5 do to 5 do with 3.8 do being preferable [42]. Holes are usually placed on 60° equilateral triangular pitch with the liquid flowing norrrially to the rows. Holes should not be greater than 2.5-3 in. apart for effective tray action. [Pg.179]

Pressure drops from Dowtherm A heat transfer media flowing in pipes may be calculated from Figure 10-137. The effective lengths of fittings, etc., are shown in Chapter 2 of Volume 1. The vapor flow can be determined from the latent heat data and the condensate flow. With a liquid system, the liquid flow can be determined using the specific heat data. [Pg.160]


See other pages where Liquid flow effect is mentioned: [Pg.221]    [Pg.221]    [Pg.1111]    [Pg.1912]    [Pg.1]    [Pg.378]    [Pg.654]    [Pg.657]    [Pg.1088]    [Pg.1290]    [Pg.1291]    [Pg.1292]    [Pg.1359]    [Pg.1384]    [Pg.1417]    [Pg.1687]    [Pg.122]    [Pg.167]    [Pg.246]    [Pg.253]    [Pg.263]    [Pg.271]    [Pg.273]    [Pg.536]    [Pg.80]    [Pg.240]    [Pg.246]    [Pg.523]    [Pg.177]    [Pg.194]    [Pg.282]    [Pg.133]   
See also in sourсe #XX -- [ Pg.263 ]




SEARCH



Flow liquid flows

© 2024 chempedia.info