Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid crystalline polymeric thermotropic

The design and synthesis of new liquid crystalline polymeric materials endowed with intrinsc chirality deserve attention, as chirality can offer probes of the supermolecular structure and a tool for modulating specific responses of the polymers (1). The chemical transformation of preformed thermotropic polymers can add novel opportunities for the realization of various molecular architectures conventionally unfeasible and best suited for mesophase modification. [Pg.79]

Thermotropic behavior of H-bonded side-chain liquid crystalline polymeric complexes. [Pg.301]

The thermotropic aromatic main chain liquid crystalline polymers are also prepared by the phase transfer catalyzed aromatic nucleophilic polymerization [87]. Polyetherification of bis(4-chloro-3-nitrophenyl) sulfone with mesogenic aromatic diols is shown below ... [Pg.42]

A review of the literature demonstrates some trends concerning the effect of the polymer backbone on the thermotropic behavior of side-chain liquid crystalline polymers. In comparison to low molar mass liquid crystals, the thermal stability of the mesophase increases upon polymerization (3,5,18). However, due to increasing viscosity as the degree of polymerization increases, structural rearrangements are slowed down. Perhaps this is why the isotropization temperature increases up to a critical value as the degree of polymerization increases (18). [Pg.99]

Large numbers of functionalized LB films have been prepared. Highly ordered LB films have been formed by the inclusion of surface-active cobaltous phthalocyanine [168] amphiphilic TCNQ was assembled to function as conducting LB films [169] liquid-crystalline LB films, potentially capable of undergoing thermotropic or lyotropic phase transitions [170, 171], have also been generated. Spacer groups introduced into polymeric surfactants (23) helped to stabilize the LB films which they formed by decoupling the motion of pendant polymers (see Fig. 13) [172]. [Pg.31]

Order and Mobility are two basic principles of mother nature. The two extremes are realized in the perfect order of crystals with their lack of mobility and in the high mobility of liquids and their lack of order. Both properties are combined in liquid crystalline phases based on the selforganization of formanisotropic molecules. Their importance became more and more visible during the last years in Material science they are a basis of new materials, in Life science they are important for many structure associated functions of biological systems. The main contribution of Polymer science to thermotropic and lyotropic liquid crystals as well as to biomembrane models consists in the fact that macromolecules can stabilize organized systems and at the same time retain mobility. The synthesis, structure, properties and phototunctionalization of polymeric amphiphiles in monolayers and multilayers will be discussed. [Pg.70]

The first fibers from a thermotropic liquid crystalline melt whose properties were reported were spun from a copolyester of para-hydroxybenzoic acid (PHB) and PET by workers at Tennessee Eastman Co. The preparation of the copolymer proceeds in two stages. First, / ara-acetoxybenzoic acid is reacted with PET in an acidolysis step to give a copolyester prepolymer, which in the second step is condensed further to a higher degree of polymerization suitable for fiber formation. [Pg.466]

Semiyen, J. A. Ring-Chain Equilibria and the Conformations of Polymer Chains. Vol. 21, pp. 41-75. Sharkey, W. H. Polymerizations Through the Carbon-Sulphur Double Bond. Vol. 17, pp. 73-103. Shibaev, V. P. and Plati, N. A. Thermotropic Liquid-Crystalline Polymers with Mesogenic Side Groups. Vol. 60/bi, pp. 173-252. [Pg.237]

A multistep reaction pathway leads to polymers 43 and 44 with phosphatidylcholine moieties in the main chain and long alkyl groups in the side chain [122]. These polymers exhibit thermotropic liquid-crystalline behavior. Polyamides 45 were obtained by interfacial polycondensation they are insoluble in any normal solvent [123]. Poly-MPC capped with cholesteryl moieties at one or both polymer ends was prepared by the radical polymerization of MFC initiated with 4,4 -azobis[(3-cholesteryl)-4-cyanopentanoate] in the presence of a chain transfer agent [124]. The self-organization of these polymers was analyzed with fluorescence and NMR measurements. [Pg.174]

Side-chain liquid-crystalline polymers with controlled molecular weights have been obtained by the polymerization of FM-25 with 1-22 (X = Br)/CuBr/ L-3 in the bulk at 100 °C, to examine the thermotropic transition as a function of the MWD.324 Second-order nonlinear optical materials with branched structure were prepared by the copper-catalyzed radical polymerization of FM-26 and FM-27 using hyperbranched poly[4-(chloromethyl)styrene] as a multifunctional initiator.325... [Pg.484]

In the procedures below, methodology is described to facilitate medium scale (ca. 100 g) synthesis of a main-chain thermotropic liquid crystalline polymer containing ethylene glycol units as a flexible spacer between the rigid aromatic units. Two methods are described melt polymerization, and polymerization in a heat-transfer solvent with an inorganic medium (Claytone). For melt polymerization, the material is obtained as an extremely rigid solid, while in the... [Pg.138]

Thermotropic side-chain ionic liquid-crystalline polymers are particularly attractive when the aim is that of merging the liquid-crystalline characteristics of the low molecular weight mesogen side groups with the mechanical properties of the polymeric main chain. It is not surprising, then, that they attracted most of the research efforts in the polymeric ionic liquid crystals field. [Pg.104]

Abstract This review will focus on recent developments that have occurred since 2000 on the utilization of specific supramolecular interactions to form polymeric aggregates which exhibit thermotropic liquid crystalline (LC) properties. [Pg.119]

Secondly, thermotropic liquid crystalline polymers are characterized in a temperature range that is often too high to keep the molecular structure unchanged. The post-polymerization and decomposition are two possible results of a prolonged study of a polymeric liquid crystalline phase. There have been reports on liquid crystalline phases observable only... [Pg.196]

Liquid crystals combine properties of both liquids (fluidity) and crystals (long range order in one, two, or three dimensions). Examples of liquid crystalline templates formed by amphiphiles are lyotropic mesophases, block copolymer mesophases, and polyelectrolyte-suxfactant complexes. Their morphological complexity enables the template synthesis of particles as well as of bulk materials with isotropic or anisotropic morphologies, depending on whether the polymerization is performed in a continuous or a discontinuous phase. As the templating of thermotropic liquid crystals is already described in other reviews [47] the focus here is the template synthesis of organic materials in lyotropic mesophases. [Pg.213]

Liquid crystals are broadly classified as nematic, cholesteric and smectic (I)- There are at least nine distinct smectic polytypes bearing the rather mundane labels smectic A, B, C,... I, by the chronological order of their discovery. Some of the smectics are actually three-dimensional solids and not distinct liquid-crystal phases at all. There are three t s of liquid crystals. Thermotropic liquid-crystal phases are those observed in pure compounds or homogeneous mixtures as the temperature is changed they are conventionally classified into nematic, cholesteric, and smectic phases in Fig.2. Lyotropic liquid-crystal phases are observed when amphiphilic molecules, such as soaps, are dissolved in a suitable solvent, usually water. Solutions of polymers also exhibit liquid-crystalline order, the polymeric phases. Most of our knowledge about liquid crystals is based on the thermotropic phases and much of this understanding can be transferred to elucidate polymeric and lyotropic phases. [Pg.63]

An equally important observation for the above copolyester LCPs is that the ordered arrangement of polymeric mesophases in the melt is retained upon cooling, which is manifested in greatly improved mechanical properties (see Figure 5.5b). The liquid crystalline behavior is therefore advantageous from the standpoint of both processing and properties. Thermotropic liquid crystal copolyesters of structures similar to (I) are now available commercially. [Pg.550]

Mesophases can be locked into a polymer network by making use of polymerizable LCs [59]. These molecules contain moieties such as acryloyl, diacety-lenic, and diene. Self-organization and in situ photopolymerization under UV irradiation will provide ordered nanostmctured polymers maintaining the stable LC order over a wide temperature range. A number of thermotropic liquid crystalline phases, including the nematic and smectic mesophases, have been successfully applied to synthesize polymer networks. Polymerization of reactive lyotropic liquid crystals also have been employed for preparation of nanoporous polymeric materials [58, 60]. For the constmction of nanoporous membranes, lyotropics hexagonal or columnar, lamellar or smectic, and bicontinuous cubic phases have been used, polymerized, and utilized demonstrated in a variety of applications (Fig. 2.11). [Pg.56]


See other pages where Liquid crystalline polymeric thermotropic is mentioned: [Pg.198]    [Pg.316]    [Pg.320]    [Pg.49]    [Pg.20]    [Pg.49]    [Pg.397]    [Pg.87]    [Pg.397]    [Pg.87]    [Pg.306]    [Pg.176]    [Pg.135]    [Pg.318]    [Pg.129]    [Pg.43]    [Pg.5]    [Pg.446]    [Pg.505]    [Pg.158]    [Pg.318]    [Pg.52]    [Pg.87]    [Pg.166]    [Pg.198]    [Pg.268]    [Pg.20]    [Pg.61]    [Pg.61]    [Pg.303]    [Pg.297]   
See also in sourсe #XX -- [ Pg.142 ]




SEARCH



Crystalline polymerization

Liquid crystalline polymeric

Liquid thermotropic

Polymeric liquids

Thermotropic liquid crystalline

Thermotropism

© 2024 chempedia.info