Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid chromatography-mass spectrometer

The different ways a particle beam liquid chromatography mass spectrometer can be configured reflect the versatility of the system in accommodating both the application and the availability of existing instrumentation. The system consists of these elements ... [Pg.55]

High performance liquid chromatography - mass spectrometer... [Pg.400]

Fig. 4.3 Schematic diagram showing the components of a ctnnpuler-controlled liquid chromatography-mass spectrometer (LC-MS) instrument... Fig. 4.3 Schematic diagram showing the components of a ctnnpuler-controlled liquid chromatography-mass spectrometer (LC-MS) instrument...
Liquid chromatography/mass spectrometry (LC/MS) is an analytical technique combining the advantages of an LC instrument with those of a mass spectrometer. [Pg.415]

Table 5.21 Intra-assay precision and accuracy of theLC-MS-MS determination of Idoxifene using a triple-quadrupole mass spectrometer. Reprinted from J. Chromatogr., B, 757, Comparison between liquid chromatography-time-of-flight mass spectrometry and selected-reaction monitoring liquid chromatography-mass spectrometry for quantitative determination of Idoxifene in human plasma , Zhang, H. and Henion, J., 151-159, Copyright (2001), with permission from Elsevier Science... Table 5.21 Intra-assay precision and accuracy of theLC-MS-MS determination of Idoxifene using a triple-quadrupole mass spectrometer. Reprinted from J. Chromatogr., B, 757, Comparison between liquid chromatography-time-of-flight mass spectrometry and selected-reaction monitoring liquid chromatography-mass spectrometry for quantitative determination of Idoxifene in human plasma , Zhang, H. and Henion, J., 151-159, Copyright (2001), with permission from Elsevier Science...
The method for chloroacetanilide soil metabolites in water determines concentrations of ethanesulfonic acid (ESA) and oxanilic acid (OXA) metabolites of alachlor, acetochlor, and metolachlor in surface water and groundwater samples by direct aqueous injection LC/MS/MS. After injection, compounds are separated by reversed-phase HPLC and introduced into the mass spectrometer with a TurboIonSpray atmospheric pressure ionization (API) interface. Using direct aqueous injection without prior SPE and/or concentration minimizes losses and greatly simplifies the analytical procedure. Standard addition experiments can be used to check for matrix effects. With multiple-reaction monitoring in the negative electrospray ionization mode, LC/MS/MS provides superior specificity and sensitivity compared with conventional liquid chromatography/mass spectrometry (LC/MS) or liquid chromatography/ultraviolet detection (LC/UV), and the need for a confirmatory method is eliminated. In summary,... [Pg.349]

LC/MS/MS. LC/MS/MS is used for separation and quantitation of the metabolites. Using multiple reaction monitoring (MRM) in the negative ion electrospray ionization (ESI) mode, LC/MS/MS gives superior specificity and sensitivity to conventional liquid chromatography/mass spectrometry (LC/MS) techniques. The improved specificity eliminates interferences typically found in LC/MS or liquid chro-matography/ultraviolet (LC/UV) analyses. Data acquisition is accomplished with a data system that provides complete instmment control of the mass spectrometer. [Pg.383]

All gas chromotography/mass spectrometry (GC/MS) analyses of monomers and intermediates were performed on a Finnigan 1020 GC/MS using a 30-m RSL-150 fused silica capillary column. Liquid chromatography/mass spectrometry (LC/NS) was performed on a Finnigan 4500 mass spectrometer using acetonitrile-water eluent and a moving belt LC/MS interface. [Pg.43]

Other combinations are available. For example, liquid chromatographs connected to mass spectrometers (known as liquid chromatography-mass spectrometry [LC-MS]) are fairly common. Almost any combination of two instruments that can be thought of has been built. In addition, two of the same instruments can be connected so that the output from one is fed directly into the other for further separation and analysis. Examples include two mass spectrometers in an MS-MS arrangement and two different gas chromatography columns connected in a series, known as GC-GC. To keep up with these advances, one needs to have a working knowledge of the fundamental principles involved in the techniques and of the abbreviations used for the various instrumentation methods. [Pg.32]

M.A. Baldwin and F.W. McLafferty, Liquid chromatography-mass spectrometry interface. I The direct introduction of liquid solutions into a chemical ionization mass spectrometer, Org. Mass Spectrom., 7 (1973) 1111-1112. [Pg.750]

The lncos-50 is a relatively low-cost benchtop instrument as opposed to the research grade instruments discussed earlier. The gas chromatography-mass spectrometer transfer lines allow it to be used with either the Hewlett Packard 5890 or the Varian 3400 gas chromatographs. The Incos 50 provides data system control of the gas chromatography and accessories such as autosampler or liquid sample concentration. It can be used with capillary, wide-bore or packed columns. It performs electron ionization or chemical ionization with positive or negative detection. It also accepts desorption or other solids controls. [Pg.76]

Mordehai, A., Lim, H. K., and Henion, J. D. (1995). Ion-spray liquid-chromatography mass-spectrometry and capillary electrophoresis mass-spectrometry on a modified benchtop ion-trap mass-spectrometer. In Practical Aspects of Ion-Trap Mass Spectrometry Chemical, Environmental and Biomedical Applications (R. E. March, and J. F. J. Todd, Eds), Vol. 3, pp. 215—237, CRC Press, Boca Raton, FL. [Pg.502]

Liquid chromatography/mass spectrometry analyses were performed with an ion trap mass spectrometer (LCQ, Thermo Fisher Scientific Inc., MA) equipped with an HPLC system (Agilent, CA Model 1100) connected with a diode-array detector (DAD, G1315A). The sample solution (1-5 p,L) was applied on an Inertsil ODS-3 column (2.1 x 150 mm, 3 p,m, GL... [Pg.142]

Figure F2.4.1 Liquid chromatography/mass spectrometry (LC/MS) analysis of isomeric carotenes in a hexane extract from 0.5 ml human serum. Positive ion electrospray ionization MS was used on a quadrupole mass spectrometer with selected ion monitoring to record the molecular ions of lycopene, p-carotene, and a-carotene at m/z (mass-to-charge ratio) 536. A C30 HPLC column was used for separation with a gradient from methanol to methyl-ferf-butyl ether. The a -trans isomer of lycopene was detected at a retention time of 38.1 min and various c/ s isomers of lycopene eluted between 27 and 39 min. The all-frans isomers of a-carotene and P-carotene were detected at 17.3 and 19.3 min, respectively. Figure F2.4.1 Liquid chromatography/mass spectrometry (LC/MS) analysis of isomeric carotenes in a hexane extract from 0.5 ml human serum. Positive ion electrospray ionization MS was used on a quadrupole mass spectrometer with selected ion monitoring to record the molecular ions of lycopene, p-carotene, and a-carotene at m/z (mass-to-charge ratio) 536. A C30 HPLC column was used for separation with a gradient from methanol to methyl-ferf-butyl ether. The a -trans isomer of lycopene was detected at a retention time of 38.1 min and various c/ s isomers of lycopene eluted between 27 and 39 min. The all-frans isomers of a-carotene and P-carotene were detected at 17.3 and 19.3 min, respectively.
Duffin, K. L., Wachs, T., and Henion, J. D. (1992). Atmospheric pressure ion-sampling system for liquid chromatography/mass spectrometry analyses on a benchtop mass spectrometer. Anal. Chem. 64 61-68. [Pg.67]

LC/MS (Liquid Chromatography/Mass Spectrometry)—Chromatography system in which an HPLC is married to a mass spectrometric detector through an evaporated, ionizing interface. A variety of mass spectrometers are used to produce various LC/MS and LC/MS/MS configurations. MS detectors are universal, mass detectors that provide molecular weight information and can give a definitive identification of separated compounds. [Pg.216]

They are still the workhorses of coupled mass spectrometric applications, as they are relatively simple to run and service, relatively inexpensive (for a mass spectrometer), and provide unit mass resolution and scanning speeds up to approximately 10,000 amu/s. This even allows for simultaneous scan/ selected ion monitoring (SIM) operation, in which one part of the data acquisition time is used to scan an entire spectrum, whereas the other part is used to record the intensities of selected ions, thus providing both qualitative information and sensitive quantitation. They are thus suitable for many GC-MS and liquid chromatography-mass spectrometry (LC-MS) applications. In contrast to GC-MS with electron impact (El) ionization, however, LC-MS provides only limited structural information as a consequence of the soft ionization techniques commonly used with LC-MS instruments [electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI)]. Because of this limitation, other types of mass spectrometers are increasingly gaining in importance for LC-MS. [Pg.316]

An extensive list that defines acronyms and abbreviations in the field of mass spectrometry was published in 2002 [6], A single analytical technique or a type of instrument is abbreviated without hyphens or slashes. However, it is customary to use hyphens for a description of an instrument whereas an abbreviation that describes the method uses slashes. For example, LC-MS is an instrument where a liquid chromatograph is coupled with a mass spectrometer, while LC/MS is the method of liquid chromatography/mass spectrometry. Thus, one uses an LC-MS instrument to obtain a LC/MS spectrum. [Pg.442]

Marquet, P., Saint-Marcoux, F., Gamble, T.N., Leblanc, J.C. (2003). Comparison of a preliminary procedure for the general unknown screening of drugs and toxic compounds using a quadrupole-linear ion-trap mass spectrometer with a liquid chromatography-mass spectrometry reference technique. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 789(1) 9-18. [Pg.221]


See other pages where Liquid chromatography-mass spectrometer is mentioned: [Pg.55]    [Pg.107]    [Pg.1972]    [Pg.201]    [Pg.579]    [Pg.9]    [Pg.165]    [Pg.55]    [Pg.107]    [Pg.1972]    [Pg.201]    [Pg.579]    [Pg.9]    [Pg.165]    [Pg.245]    [Pg.401]    [Pg.1146]    [Pg.455]    [Pg.414]    [Pg.237]    [Pg.218]    [Pg.129]    [Pg.134]    [Pg.1093]    [Pg.499]    [Pg.878]    [Pg.124]    [Pg.396]    [Pg.16]    [Pg.52]    [Pg.143]    [Pg.315]    [Pg.69]    [Pg.444]    [Pg.186]    [Pg.56]   


SEARCH



Liquid chromatography-mass

© 2024 chempedia.info