Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipophilic forces

Croizet, F., Langlois, M. H., Dubost, J. P., et al. (1990) Lipophilicity force field profile an expressive visualization of the lipophilicity molecular potential gradient.. /. Mol. Graph. 8, 149-53. [Pg.257]

Phase transfer catalysis succeeds for two reasons First it provides a mechanism for introducing an anion into the medium that contains the reactive substrate More important the anion is introduced m a weakly solvated highly reactive state You ve already seen phase transfer catalysis m another form m Section 16 4 where the metal complexmg properties of crown ethers were described Crown ethers permit metal salts to dissolve m nonpolar solvents by surrounding the cation with a lipophilic cloak leav mg the anion free to react without the encumbrance of strong solvation forces... [Pg.926]

The stereoelectronic features produce actions at a distance by the agency of the recognition forces they create. These forces are the hydrophobic effect, and the capacity to enter ionic bonds, van der Waals interactions and H-bonding interactions. The most convenient and informative assessment of such recognition forces is afforded by computahon in the form of MIFs, e.g. lipophilicity fields, hydrophobicity fields, molecular electrostatic potentials (MEPs) and H-bonding fields (see Chapter 6) [7-10]. [Pg.9]

A comparahve analysis of coefficients and descriptors clarifies the relationship between lipophilicity and hydrophobicity (Y in Eq. 4 is the molar volume which assesses the solute s capacity to elicit nonpolar interactions (i.e. hydrophobic forces) which, as also clearly stated in the International Union of Pure and Applied Chemistry definitions [3] are not synonyms but, when only neutral species are concerned, may be considered as interchangeable. In the majority of partitioning systems, the lipophilicity is chiefly due to the hydrophobicity, as is clearly indicated by the finding that the product of numerical values of the descriptors V and of the coefficient v is larger in absolute value than the corresponding product of other couples of descriptors/coefficients [9]. This explains the very common linear rela-... [Pg.323]

We have not yet introduced the influence of the presence of point charges on the lipophilicity of a chemical. Nevertheless, Sections 12.1.1.2 and 12.1.1.3 do warn that the lipophilic behavior of an ionized molecule might be very different from that of its parent neutral compound. Indeed, in order to investigate the balance of forces governing the lipophiUcity of ionized species we must do without Abraham s equations, since they do not exist when ions are considered. Recently, Abraham et al. also demonstrated what had long been perceived intuitively - descriptors for ions are not the same as those for nonelectrolytes [12]. [Pg.324]

Lipophilicity is the measure of the partitioning of a compound between a lipidic and an aqueous phase [1]. The terms lipophilicity and hydrophobicity are often used inconsistently in the literature. Lipophilicity encodes most of the intramolecular forces that can take place between a solute and a solvent. Hydrophobicity is a consequence of attractive forces between nonpolar groups and thereby is a component of lipophilicity [2]. Lipophilicity is one of the most informative physicochemical properties in medicinal chemistry and since long successfully used in quantitative structure-activity relationship (QSAR) studies. Its... [Pg.357]

We have tried to cover some of the important aspects of the determination and use oflog P and log D parameters. Far from being exhaushve, this chapter attempted to offer some considerations and perspective in a field where, after 40 years from its beginning at the hand of Corwin Hansch et al, there does not seem to be much alternative to the balance of forces encoded by the octanol-water system to model lipophilicity. [Pg.430]

Lipophilicity is a molecular property expressing the relative affinity of solutes for an aqueous phase and an organic, water-immiscible solvent. As such, lipophilicity encodes most of the intermolecular forces that can take place between a solute and a solvent, and represents the affinity of a molecule for a lipophilic environment. This parameter is commonly measured by its distribution behavior in a biphasic system, described by the partition coefficient of the species X, P. Thermodynamically, is defined as a constant relating the activity of a solute in two immiscible phases at equilibrium [111,112]. By convention, P is given with the organic phase as numerator, so that a positive value for log P reflects a preference for the lipid phase ... [Pg.730]

Allelopathic inhibition of mineral uptake results from alteration of cellular membrane functions in plant roots. Evidence that allelochemicals alter mineral absorption comes from studies showing changes in mineral concentration in plants that were grown in association with other plants, with debris from other plants, with leachates from other plants, or with specific allelochemicals. More conclusive experiments have shown that specific allelochemicals (phenolic acids and flavonoids) inhibit mineral absorption by excised plant roots. The physiological mechanism of action of these allelochemicals involves the disruption of normal membrane functions in plant cells. These allelochemicals can depolarize the electrical potential difference across membranes, a primary driving force for active absorption of mineral ions. Allelochemicals can also decrease the ATP content of cells by inhibiting electron transport and oxidative phosphorylation, which are two functions of mitochondrial membranes. In addition, allelochemicals can alter the permeability of membranes to mineral ions. Thus, lipophilic allelochemicals can alter mineral absorption by several mechanisms as the chemicals partition into or move through cellular membranes. Which mechanism predominates may depend upon the particular allelochemical, its concentration, and environmental conditions (especially pH). [Pg.161]

Figure 7.17 shows the asymmetry ratios of a series of compounds (acids, bases, and neutrals) determined at iso-pH 7.4, under the influence of sink conditions created not by pH, but by anionic surfactant added to the acceptor wells (discuss later in the chapter). The membrane barrier was constructed from 20% soy lecithin in dodecane. All molecules show an upward dependence on lipophilicity, as estimated by octanol-water apparent partition coefficients, log KdaA). The bases are extensively cationic at pH 7.4, as well as being lipophilic, and so display the highest responses to the sink condition. They are driven to interact with the surfactant by both hydrophobic and electrostatic forces. The anionic acids are largely indifferent... [Pg.151]

The transport properties of the acids did not respond significantly to the presence of the sink. This may be because at pH 7.4 the acids are negatively charged, as are the phospholipid membranes and also the surfactant micelles electrostatic repulsions balanced out the attractive forces due to increased membrane lipophilicity. Lowered surface pH may also play a balancing role [457]. [Pg.197]

The method for creating acceptor sink condition discussed so far is based on the use of a surfactant solution. In such solutions, anionic micelles act to accelerate the transport of lipophilic molecules. We also explored the use of other sink-forming reagents, including serum proteins and uncharged cyclodextrins. Table 7.20 compares the sink effect of 100 mM (5-cyclodextrin added to the pH 7.4 buffer in the acceptor wells to that of the anionic surfactant. Cyclodextrin creates a weaker sink for the cationic bases, compared to the anionic surfactant. The electrostatic binding force between charged lipophilic bases and the anionic surfactant micelles... [Pg.228]

These observations can be formulated into the following mechanistic model. In general, the flux of a solute across a cell membrane is determined by the balance of water-solute and membrane-solute forces. For lipophilic solutes, the principal driving force for transfer from water to the membrane will be the... [Pg.292]

The application of a two-step partitioning process can be motivated if we consider the insertion of a polar, but lipophilic, molecule into a phospholipid membrane. In the first step, lipophilicity is the major driving force for drug incorpora-... [Pg.345]


See other pages where Lipophilic forces is mentioned: [Pg.192]    [Pg.60]    [Pg.60]    [Pg.81]    [Pg.70]    [Pg.137]    [Pg.177]    [Pg.194]    [Pg.192]    [Pg.60]    [Pg.60]    [Pg.81]    [Pg.70]    [Pg.137]    [Pg.177]    [Pg.194]    [Pg.800]    [Pg.224]    [Pg.800]    [Pg.396]    [Pg.164]    [Pg.539]    [Pg.390]    [Pg.417]    [Pg.430]    [Pg.737]    [Pg.752]    [Pg.757]    [Pg.137]    [Pg.3]    [Pg.14]    [Pg.293]    [Pg.107]    [Pg.180]    [Pg.802]    [Pg.250]    [Pg.181]    [Pg.5]    [Pg.7]    [Pg.211]   
See also in sourсe #XX -- [ Pg.70 ]




SEARCH



Forces Encoded in Lipophilicity

© 2024 chempedia.info