Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipid phosphatidylcholine and

Plasma membrane lipids are asymmetrically distributed between the two monolayers of the bilayer, although the asymmetry, unlike that of membrane proteins, is not absolute. In the plasma membrane of the erythrocyte, for example, choline-containing lipids (phosphatidylcholine and sphingomyelin) are typically found in the outer (extracellular or exoplasmic) leaflet (Fig. 11-5), whereas phosphatidylserine, phosphatidyl-ethanolamine, and the phosphatidylinositols are much more common in the inner (cytoplasmic) leaflet. Changes in the distribution of lipids between plasma membrane leaflets have biological consequences. For example, only when the phosphatidylserine in the plasma membrane moves into the outer leaflet is a platelet able to play its role in formation of a blood clot. For many other cells types, phosphatidylserine exposure on the outer surface marks a cell for destruction by programmed cell death. [Pg.373]

The cammon features of plasma lipoprotein structure are shown in Fig. 2. The interior of the lipoproteins contains the neutral lipids, cholesteryl ester and triglyceride. The exterior surface is a monomolecular film of specific proteins, termed apolipopro-teins, and the polar lipids, phosphatidylcholine and cholesterol. One possible arrangement (Edelstein et al., 1979) of the phosphatidylcholine, cholesterol and apolipoprotein A-1 (apoA-1) in HDL the most abundant of the plasma lipoproteins, is illustrated schematically in Fig. 3. In this model, there are no lipid domains in the surface of HDL. The phospholipid molecules are widely dispersed so that intermolecular associations can involve only apoprotein lipid and apoprotein apoprotein interactions. By contrast, with increasing size and a greater proportion of hydrophobic core volume, the structure of the larger lipoproteins more closely re-... [Pg.208]

Discuss the effects on the lipid phase transition of pure dimyris-toyl phosphatidylcholine vesicles of added (a) divalent cations, (b) cholesterol, (c) distearoyl phosphatidylserine, (d) dioleoyl phosphatidylcholine, and (e) integral membrane proteins. [Pg.294]

When liposomes are prepared from a molecular mixture of lipid components it is important that all lipids be homogeneously dissolved in an organic solvent in order to obteiin bilayers with evenly distributed lipids after hydration. For example, the solubilities of phosphatidylcholine and cholesterol in chloroform are similar their solubility in benzene differs. Upon removal of benzene from the lipid solution an inhomogeneous lipid film is formed on the glass wall and... [Pg.264]

In studies with specific phospholipases the asymmetry in the composition of the lipid bilayer was also suggested [102,162]. The requirement of specific phospholipids, which are essential for enzyme activity, however, has not been established. For example, Saccomani et al. [102] demonstrated that readdition of various phospholipids, after phospholipase A2 treatment, results in a restoration of the K -ATPase activity. On the other hand, Nandi et al. [161] observed a restoration of the K -ATPase activity with addition of phosphatidylcholine and not with phosphatidyl-... [Pg.44]

Here, the BLM was obtained as a black lipid membrane by brushing an -decane solution of a 1 1 mixture of phosphatidylcholine and cholesterol on an aperture of 1 mm in diameter in a tetrafluoroethylene resin sheet of 0.2 mm thick [37-39]. The BLM was not sufficiently stable when wi-w2 out of the region was applied. [Pg.495]

Lessard, J. G. Fragata, M., Micropolarities of lipid bilayers and micelles. 3. Effect of monovalent ions on the dielectric constant of the water-membrane interface of unilamellar phosphatidylcholine vesicles, J. Phys. Chem. 90, 811-817 (1986). [Pg.275]

The squaraine probe 9g was tested for its sensitivity to trace the formation of protein-lipid complexes [57]. The binding of dye 9g to model membranes composed of zwitter-ionic lipid phosphatidylcholine (PC) and its mixtures with anionic lipid cardiolipin (CL) in different molar ratios was found to be controlled mainly by hydrophobic interactions. Lysozyme (Lz) and ribonuclease A (RNase) influenced the association of 9g with lipid vesicles. The magnitude of this effect was much higher... [Pg.77]

Fig. 4.8. (Below) A diagram of the bilipid layer membrane of a vesicle or a cell with (above) a typical lipid, phosphatidylcholine. Large molecules and ions cannot penetrate the membrane as illustrated by the ions surrounding and inside a cell, but the distribution is reversed in vesicles (see Chapter 7). The ions create chemical and electrical field gradients across the membrane. Fig. 4.8. (Below) A diagram of the bilipid layer membrane of a vesicle or a cell with (above) a typical lipid, phosphatidylcholine. Large molecules and ions cannot penetrate the membrane as illustrated by the ions surrounding and inside a cell, but the distribution is reversed in vesicles (see Chapter 7). The ions create chemical and electrical field gradients across the membrane.
LOX-catalyzed oxidation of LDL has been studied in subsequent studies [26,27]. Belkner et al. [27] showed that LOX-catalyzed LDL oxidation was not restricted to the oxidation of lipids but also resulted in the cooxidative modification of apoproteins. It is known that LOX-catalyzed LDL oxidation is regio- and enantio-specific as opposed to free radical-mediated lipid peroxidation. In accord with this proposal Yamashita et al. [28] showed that LDL oxidation by 15-LOX from rabbit reticulocytes formed hydroperoxides of phosphatidylcholine and cholesteryl esters regio-, stereo-, and enantio-specifically. Sigari et al. [29] demonstrated that fibroblasts with overexpressed 15-LOX produced bioactive minimally modified LDL, which is probably responsible for LDL atherogenic effect in vivo. Ezaki et al. [30] found that the incubation of LDL with 15-LOX-overexpressed fibroblasts resulted in a sharp increase in the cholesteryl ester hydroperoxide level and a lesser increase in free fatty acid hydroperoxides. [Pg.809]

The biological membrane is composed of lipid bilayers and proteins, and it is generally agreed that the lipid bilayer (layer width, 50-70 A) is the basic structural unit (e.g. Brockerhoff, 1977). The most abundant bilayer-forming lipids are the phosphatidylcholines (lecithins). These compounds have a... [Pg.438]

It can be seen from Figure 1 that the choline-containing phospholipids, phosphatidylcholine and sphingomyelin are localized predominantly in the outer monolayer of the plasma membrane. The aminophospholipids, conprising phosphatidylethanolamine and phosphatidylserine, by contrast, are enriched in the cytoplasmic leaflet of the membrane (Bretcher, 1972b Rothman and Lenard, 1977 Op den Kamp, 1979). The transmembrane distribution of the minor membrane lipid components has been determined by reaction with lipid-specific antibodies (Gascard et al, 1991) and lipid hydrolases (Biitikofer et al, 1990). Such studies have shown that phosphatidic acid, phosphatidylinositol and phosphatidylinositol-4,5-fc -phosphate all resemble phosphatidylethanolamine in that about 80% of the phospholipids are localized in the cytoplasmic leaflet of the membrane. [Pg.40]

Once synthesized several factors influence the particular leaflet of the membrane lipid bilayer where the lipids reside. One is static interactions with intrinsic and extrinsic membrane proteins which, by virtue of their mechanism of biosynthesis, are also asymmetric with respect to the membrane. The interaction of the cytoplasmic protein, spectrin with the erythrocye membrane has been the subject of a number of studies. Coupling of spectrin to the transmembrane proteins, band 3 and glycophorin 3 via ankyrin and protein 4.1, respectively, has been well documented (van Doit et al, 1998). Interaction of spectrin with membrane lipids is still somewhat conjectural but recent studies have characterized such interactions more precisely. O Toole et al. (2000) have used a fluorescine derivative of phosphatidylethanolamine to investigate the binding affinity of specttin to lipid bilayers comprised of phosphatidylcholine or a binary mixture of phosphatidylcholine and phosphatidylserine. They concluded on the basis... [Pg.45]

Many types of liposomes of different lipid composition and different sizes having a transmembrane AS gradient were prepared (10). These liposomes varied (i) in their liposome-forming phosphatidylcholine (PC), being with and without cholesterol and/or lipopolymer (ii) in their size and (iii) in their method of preparation. The approaches for preparing these different liposome formulations varies in their lipid hydration and downsizing. Table 1 in Haran et al. (10) gives a partial list of such liposome preparations. In all cases the scheme of liposome preparation can be summarized as described in Table 4. [Pg.13]

Briefly, liposomes (10mM) were incubated for 30minutes at 37°C for egg phosphatidylcholine (EPC) and at 60°C for HSPC-based liposomes with 50 X 10 dpm of methylamine (1 x 10 dpm/mole). At the end of incubation an aliquot of this mixture was passed down a Sephadex G-50 minispin column equilibrated in 10 mM histidine-sucrose buffer 10%, pH 6.7 buffer. Liposomes were eluted at the column void volume and separated from the unencapsulated methylamine. The concentration of liposomes in the original liposomal dispersion and in the void volume fraction was determined from the organic phosphorus (phospholipid) concentration (see section Lipid Quantification and Chemical Stability above) (10,49,53). [Pg.20]

Fig. 1.9 Structures of charge neutral (phosphatidylcholine) and acidic (phosphatidylserine) phospholipids together with the moderately lipophilic and basic drug chlorphentermine. The groupings R1 and R2 refer to the acyl chains of the lipid portions. Fig. 1.9 Structures of charge neutral (phosphatidylcholine) and acidic (phosphatidylserine) phospholipids together with the moderately lipophilic and basic drug chlorphentermine. The groupings R1 and R2 refer to the acyl chains of the lipid portions.
Tab. 1.1 Affinity ((t) and capacity (moles dmg/moles lipid) of chlorphentermine for liposomes prepared from phosphatidylcholine and phosphatidylserine. Tab. 1.1 Affinity ((t) and capacity (moles dmg/moles lipid) of chlorphentermine for liposomes prepared from phosphatidylcholine and phosphatidylserine.

See other pages where Lipid phosphatidylcholine and is mentioned: [Pg.636]    [Pg.636]    [Pg.467]    [Pg.575]    [Pg.636]    [Pg.636]    [Pg.467]    [Pg.575]    [Pg.103]    [Pg.686]    [Pg.420]    [Pg.215]    [Pg.314]    [Pg.377]    [Pg.31]    [Pg.564]    [Pg.585]    [Pg.387]    [Pg.777]    [Pg.850]    [Pg.43]    [Pg.68]    [Pg.148]    [Pg.416]    [Pg.143]    [Pg.119]    [Pg.98]    [Pg.44]    [Pg.155]    [Pg.210]    [Pg.19]    [Pg.53]    [Pg.612]    [Pg.137]    [Pg.410]    [Pg.23]   


SEARCH



Lipids phosphatidylcholine

Phosphatidylcholin

Phosphatidylcholine

Phosphatidylcholines

© 2024 chempedia.info