Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear viscoelasticity principle

Since the Gross frequency relaxation spectrum can be computed from r , i.e., from the loss modulus, G = T co, the agreement between the computed and measured G values provides good means of verifying both the computational and experimental procedures. It has been found that Eqs 7.83 and 7.84 are useful to evaluate the rheological performance of systems that obey the linear viscoelastic principles. [Pg.484]

The simplest theoretical model proposed to predict the strain response to a complex stress history is the Boltzmann Superposition Principle. Basically this principle proposes that for a linear viscoelastic material, the strain response to a complex loading history is simply the algebraic sum of the strains due to each step in load. Implied in this principle is the idea that the behaviour of a plastic is a function of its entire loading history. There are two situations to consider. [Pg.95]

It is apparent therefore that the Superposition Principle is a convenient method of analysing complex stress systems. However, it should not be forgotten that the principle is based on the assumption of linear viscoelasticity which is quite inapplicable at the higher stress levels and the accuracy of the predictions will reflect the accuracy with which the equation for modulus (equation (2.33)) fits the experimental creep data for the material. In Examples (2.13) and (2.14) a simple equation for modulus was selected in order to illustrate the method of solution. More accurate predictions could have been made if the modulus equation for the combined Maxwell/Kelvin model or the Standard Linear Solid had been used. [Pg.103]

An important and sometimes overlooked feature of all linear viscoelastic liquids that follow a Maxwell response is that they exhibit anti-thixo-tropic behaviour. That is if a constant shear rate is applied to a material that behaves as a Maxwell model the viscosity increases with time up to a constant value. We have seen in the previous examples that as the shear rate is applied the stress progressively increases to a maximum value. The approach we should adopt is to use the Boltzmann Superposition Principle. Initially we apply a continuous shear rate until a steady state... [Pg.125]

Viscoelastic behavior is classified as linear or non-linear according to the manner by which the stress depends upon the imposed deformation history (SO). Insteady shear flows, for example, the shear rate dependence of viscosity and the normal stress functions are non-linear properties. Linear viscoelastic behavior is obtained for simple fluids if the deformation is sufficiently small for all past times (infinitesimal deformations) or if it is imposed sufficiently slowly (infinitesimal rate of deformation) (80,83). In shear flow under these circumstances, the normal stress differences are small compared to the shear stress, and the expression for the shear stress reduces to a statement of the Boltzmann superposition principle (15,81) ... [Pg.22]

Apply the Boltzmann superposition principle for the case of a continuous stress application on a linear viscoelastic material to obtain the resulting strain y(t) in terms of J(t — t ) and ih/dt, the stress history. Consider the applied stress in terms of small applied At,-, as shown on the accompanying figure. [Pg.142]

With all these models, the simple ones as well as the spectra, it has to be supposed that stress and strain are, at any time, proportional, so that the relaxation function E(t) and the creep function D(t) are independent of the levels of deformation and stress, respectively. When this is the case, we have linear viscoelastic behaviour. Then the so-called superposition principle holds, as formulated by Boltzmann. This describes the effect of changes in external conditions of a viscoelastic system at different points in time. Such a change may be the application of a stress or also an imposed deformation. [Pg.108]

Later on we shall see that the superposition principle is is, for polymers, only seldomly obeyed linear viscoelasticity is only met at very small stresses and deformations, at loading levels occurring in practice the behaviour may strongly deviate from linearity. However, the superposition principle provides a useful first-order approximation. [Pg.109]

The major features of linear viscoelastic behavior that will be reviewed here are the superposition principle and time-temperature equivalence. Where they are valid, both make it possible to calculate the mechanical response of a material under a wide range of conditions from a limited store of experimental information. [Pg.410]

The generalized stress-strain relationships in linear viscoelasticity can be obtained directly from the generalized Hooke s law, described by Eqs. (4.85) and (4.118), by using the so-called correspondence principle. This principle establishes that if an elastic solution to a stress analysis is known, the corresponding viscoelastic (complex plane) solution can be obtained by substituting for the elastic quantities the -multiplied Laplace transforms (8 p. 509). The appUcation of this principle to Eq. (4.85) gives... [Pg.221]

The beauty of the linear viscoelastic analysis lies in the fact that once a viscoelastic function is known, the rest of the functions can be determined. For example, if one measures the comphance function J t), the values of the components of the complex compliance function can in principle be determined from J(t) by using Fourier transforms [Eqs. (6.30)]. On the other hand, the components of the complex relaxation moduh can be obtained from those of / (co) by using Eq. (6.50). Even more, the real components of both the complex relaxation modulus and the complex compliance function can be determined from the respective imaginary components, and vice versa, by using the Kronig-Kramers relations. Moreover, the inverse of the Fourier transform of G (m) and/or G"(co) [/ (co) and/or /"(co)] allows the determination of the shear relaxation modulus (shear creep compliance). Finally, the convolution integrals of Eq. (5.57) allow the determination of J t) and G t) by an efficient method of numerical calculation outlined by Hopkins and Hamming (13). [Pg.255]

Many constitutive equations have been proposed in addition to those indicated above, which are special cases of fluids with memory. Most of these expressions arise from the generalization of linear viscoelasticity equations to nonlinear processes whenever they obey the material indifference principle. However, these generalizations are not unique, because there are many equations that reduce to the same linear equation. It should be noted that a determined choice among the possible generalizations may be suitable for certain types of fluids or special kinds of deformations. In any case, the use of relatively simple expressions is justified by the fact that they can predict, at least qualitatively, the behavior of complex fluids. [Pg.515]

Chapters 5 and 6 discuss how the mechanical characteristics of a material (solid, liquid, or viscoelastic) can be defined by comparing the mean relaxation time and the time scale of both creep and relaxation experiments, in which the transient creep compliance function and the transient relaxation modulus for viscoelastic materials can be determined. These chapters explain how the Boltzmann superposition principle can be applied to predict the evolution of either the deformation or the stress for continuous and discontinuous mechanical histories in linear viscoelasticity. Mathematical relationships between transient compliance functions and transient relaxation moduli are obtained, and interrelations between viscoelastic functions in the time and frequency domains are given. [Pg.884]

Materials can show linear and nonlinear viscoelastic behavior. If the response of the sample (e.g., shear strain rate) is proportional to the strength of the defined signal (e.g., shear stress), i.e., if the superposition principle applies, then the measurements were undertaken in the linear viscoelastic range. For example, the increase in shear stress by a factor of two will double the shear strain rate. All differential equations (for example, Eq. (13)) are linear. The constants in these equations, such as viscosity or modulus of rigidity, will not change when the experimental parameters are varied. As a consequence, the range in which the experimental variables can be modified is usually quite small. It is important that the experimenter checks that the test variables indeed lie in the linear viscoelastic region. If this is achieved, the quality control of materials on the basis of viscoelastic properties is much more reproducible than the use of simple viscosity measurements. Non-linear viscoelasticity experiments are more difficult to model and hence rarely used compared to linear viscoelasticity models. [Pg.3134]

Linear Viscoelasticity of Unfractionated Samples. The BP6L and BP6H samples were found to give reproducible data at temperatures below 120°C if first exposed to 150°C for 5 minutes. After such a heat treatment measurements were made on these samples at T = 35, 41, 50, 60, 70, 80, 90, 101, and 120°C. The empirical time-temperature superposition principle (13) was found to be valid for BP6L between 60°C and 120°C and for BP6H between 40°C and 120°C, and was used to make master curves at a reference temperature of 101°C (Figs. 4 and 5). The modulus scale... [Pg.227]

The various experimental methods of linear viscoelasticity are summarized in Table 7.1. All information for linear viscoelastic response can, in principle, be obtained from each method. The oscillatory methods are particularly useful because they directly probe the response of the system on the time scale of the imposed frequency of oscillation 1 juj. Commercial rheometers can accomplish this with either applied stress or applied strain,... [Pg.293]

The second important consequence of the relaxation times of all modes having the same temperature dependence is the expectation that it should -bp possible to superimpose linear viscoelastic data taken at different temperatures. This is commonly known as the time-temperature superposition principle. Stress relaxation modulus data at any given temperature Tcan be superimposed on data at a reference temperature Tq using a time scale multiplicative shift factor uj- and a much smaller modulus scale multiplicative shift factor hf. [Pg.335]

Overall, the semi-quantitative agreement between the linear viscoelastic spectra and first-principles MCT calculations is very promising. Yet, crystallization effects in the data prevent a closer look, which will be given in Sect. 6.2, where data from a more polydisperse sample are discussed. [Pg.85]

It is commonplace for rheologists to investigate the linear viscoelastic properties of materials and, indeed, this is certainly the case in the pharmaceutical and related sciences. Bird et al. (24) and Barnes et al. (2) have suggested several reasons for this, including the ability to derive speculative molecular structures of materials from their rheological response in the linear viscoelastic region and, additionally, the ability to relate the parameters derived from the linear viscoelastic response to quality control procedures and, in some instances, to clinical response (7,9,19,25-27). Furthermore, the mathematical principles associated with the linear viscoelastic response are less complex than those for nonlinear viscoelasticity, thus ensuring relatively simple interpretations of results. [Pg.319]

Inherent in the mathematical treatment of linear viscoelasticity is the Boltzmann superposition principle (15), which, in simple terms, states that the deformation resulting at any time is directly proportional to the applied stress. This is illustrated in Figure 10.5. [Pg.319]

For the tensile strength of a rubber to follow the time-temperature equivalence principle of linear viscoelasticity it is necessary that the extension at break also follow it. This is most easily verified by use of Equation (23), i.e., with the simplifying assumption of strain-time factorization. In an experiment conducted at fixed rate of strain, i = constant, the stress at any temperature and strain may be shown to be (200) ... [Pg.212]

Any of equations (2-45), (2-46), (2-49), or (2-50) is sufficient as a statement of the Boltzmann superposition principle for linear viscoelastic response of a material. Often in particular applications, however, it is more convenient to use one form than another. All can be extended to three dimensions by using the same forms with the strains given by equation (2-18). Thus, for example, equation (2-46) becomes ... [Pg.32]

The basic foundation of linear viscoelasticity theory is the Boltzmann s superposition principle which states ... [Pg.363]

This idea can be used to formulate an integral representation of linear viscoelasticity. The strategy is to perform a thought experiment in which a step function in strain is applied, e t) = Cq H t), where H t) is the Heaviside step function, and the stress response a t) is measured. Then a stress relaxation modulus can be defined by E t) = <7(t)/ o Note that does not have to be infinitesimal due to the assumed superposition principle. To develop a model capable of predicting the stress response from an arbitrary strain history, start by decomposing the strain history into a sum of infinitesimal strain increments ... [Pg.363]

Another interesting aspect of linear viscoelasticity is that it can be extended to enable predictions at different temperatures. The basis for this approach is based on a time-temperature superposition principle.This approach has been shown to work well in a restricted temperature range, but does not change the requirement of small strains. [Pg.364]

Linear viscoelasticity is the simplest viscoelastic behavior in which the ratio of stress to strain is a function of time alone and not of the strain or stress magnitude. Under a sufficiently small strain, the molecular structure will be practically unaffected, and linear viscoelastic behavior will be observed. At this sufficiently small strain (within the linear range), a general equation that describes all types of linear viscoelastic behavior can be developed by using the Boltzmann superposition principle (Dealy and Wiss-brun, 1990). For a sufficiently small strain (yo) in the experiment, the relaxation modulus is given by... [Pg.10]

In the following sections we discuss the two superposition principles that are important in the theory of viscoelasticity. The first is the Boltzmann superposition principle, which is concerned with linear viscoelasticity, and the second is time-temperature superposition, which deals with the time-temperature equivalence. [Pg.413]

As discussed earlier for a Hookean solid, stress is a linear function of strain, while for a Newtonian fluid, stress is a linear function of strain rate. The constants of proportionality in these cases are modulus and viscosity, respectively. However, for a viscoelastic material the modulus is not constant it varies with time and strain history at a given temperature. But for a linear viscoelastic material, modulus is a function of time only. This concept is embodied in the Boltzmann principle, which states that the effects of mechanical history of a sample are additive. In other words, the response of a linear viscoelastic material to a given load is independent of the response of the material to ary load previously on the material. Thus the Boltzmann principle has essentially two implications — stress is a linear function of strain, and the effects of different stresses are additive. [Pg.413]

Let us illustrate the Boltzmann principle by considering creep. Suppose the initial creep stress, Oo= on a linear, viscoelastic body is increased sequentially to 0, 02- -On at times tj, t2...t , then according to the Boltzmann principle, the creep at time t due to such a loading history is given by... [Pg.413]

The most commonly used model is the Boltzmann superposition principle, which proposes that for a linear viscoelastic material the entire loading history contributes to the strain response, and the latter is simply given by the algebraic sum of the strains due to each step in the load. The principle may be expressed as follows. If an equation for the strain is obtained as a function of time under a constant stress, then the modulus as a function of time may be expressed as... [Pg.297]

First, we need a rule to predict the effect of time-varying loads on a viscoelastic model. When a combination of loads is applied to an elastic material, the stress (and strain) components caused by each load in turn can be added. This addition concept is extended to linear viscoelastic materials. The Boltzmann superposition principle states that if a creep stress ai is... [Pg.208]

Boltzmann superposition principle A basis for the description of all linear viscoelastic phenomena. No such theor) is available to serve as a basis for the interpretation of nonlinear phenomena—to describe flows in which neither the strain nor the strain rate is small. As a result, no general valid formula exists for calculating values for one material function on the basis of experimental data from another. However, limited theories have been developed. See kinetic theory viscoelasticity, nonlinear, bomb See plasticator safety. [Pg.125]

The mechanical properties are dependent on both the chemical and physical nature of the polymer and the environment in which it is used. For amorphous polymers, the principles of linear viscoelasticity apply, but these are no longer valid for a semicrystalline polymer. The mechanical response of a polymer is profoundly influenced by the degree of crystallinity in the sample. [Pg.420]

We have used the generalized phenomenological Maxwell model or Boltzmann s superposition principle to obtain the basic equation (Eq. (4.22) or (4.23)) for describing linear viscoelastic behavior. For the kind of polymeric liquid studied in this book, this basic equation has been well tested by experimental measurements of viscoelastic responses to different rate-of-strain histories in the linear region. There are several types of rate-of-strain functions A(t) which have often been used to evaluate the viscoelastic properties of the polymer. These different viscoelastic quantities, obtained from different kinds of measurements, are related through the relaxation modulus G t). In the following sections, we shall show how these different viscoelastic quantities are expressed in terms of G(t) by using Eq. (4.22). [Pg.58]


See other pages where Linear viscoelasticity principle is mentioned: [Pg.824]    [Pg.147]    [Pg.26]    [Pg.60]    [Pg.126]    [Pg.81]    [Pg.133]    [Pg.13]    [Pg.457]    [Pg.331]    [Pg.3]    [Pg.35]    [Pg.81]   
See also in sourсe #XX -- [ Pg.246 ]




SEARCH



Elastic-viscoelastic correspondence principle linear viscoelasticity

Linear viscoelastic response principle

Linear viscoelasticity Boltzmann superposition principle

Linear viscoelasticity superposition principle

Principles of Linear Viscoelasticity

Viscoelastic behaviour, linear Boltzmann superposition principle

© 2024 chempedia.info