Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Limiting Flow Rates Column Diameter

Flow rates, particularly those of the liquid, flowing downward, have a wide operational range. They must, however, be kept within certain limits to prevent a deterioration in performance or an outright breakdown in column operation. We discuss these limits in some detail below. [Pg.358]


The maximum and minimum flow rate available from the solvent pump may also, under certain circumstances, determine the minimum or maximum column diameter that can be employed. As a consequence, limits will be placed on the mass sensitivity of the chromatographic system as well as the solvent consumption. Almost all commercially available LC solvent pumps, however, have a flow rate range that will include all optimum flow rates that are likely to be required in analytical chromatography... [Pg.363]

Increasing the speed of analysis has always been an important goal for GC separations. All other parameters being equal, the time of GC separations can be decreased in a number of ways (1) shorten the column (2) increase the carrier gas flow rate (3) reduce the column film thickness (4) reduce the carrier gas viscosity (5) increase the column diameter and/or (6) heat the column more quickly. The trade-off for increased speed, however, is reduced sample capacity, higher detection limits, and/or worse separation efficiency. [Pg.763]

Based on Table 3.2, we can deduce from the available flow rates that some manufacturers clearly optimized their systems for 2.1 mm inner diameter (ID) columns, namely the Jasco X-LC, the Thermo Accela, and the Waters Acquity. By sacrificing flexibility in column ID, these systems have been completely optimized to these 2.1 mm columns. Achieving that will be explained below. The instruments of Agilent and Dionex mentioned in Table 3.2 involve a more flexible approach. The higher flow rate limits of their systems allow the use of columns with larger Ids. Users benefit from the better efficiency obtained with 4.6 or 3.0 mm ID columns instead of 2.1 mm ID columns of similar length and their systems are fully compatible with existing conventional methods. [Pg.101]

Column diameter is an important parameter to consider in life science applications in which sample amounts are very limited and the components of interest may not be abundant. Researchers have reviewed micro HPLC instrumentation and its advantages.910 Nano LC-MS offers 1000- to 34,000-time reductions in the dilution of a sample molecular zone eluted from nano LC columns of 25 to 150 [Mi IDs in comparison to a 4.6 mm ID column. This represents a large enhancement of ion counts in comparison to counts obtained for the same amount of sample injected into a conventional 4.6 mm column. Solvent consumption for an analysis run or sample amount required for injection in a nano LC application may be reduced 1000 to 34,000 times compared to amounts required by an analytical column operated at a 1 mL/min flow rate. [Pg.360]

This chapter provides an overview of essential concepts in HPLC including retention, selectivity, efficiency, and resolution as well as their relationships with key column and mobile phase parameters such as particle size, column length and diameter, mobile phase strength, pH, and flow rate. The significance of several concepts important in pharmaceutical analysis such as peak capacity, gradient time, void volume, and limit of quantitation are discussed. [Pg.44]

The promise of monolith is the achievement of a higher performance at a lower backpressure than a packed bed. While this is true in principle, current implementations are limited by the fact that the external wall to the structure is made from PEEK. At the time of this writing, the commercially available monoliths can only be used up to a pressure of 20MPa (200 atm, 3000 psi), while packed bed steel columns can be used up to double this pressure and higher. Also, the preparation of the monolith appears to be cumbersome. At the current time, the silica-based monoliths are available only with an internal diameter of 4.6mm. The speed is thus also limited by the flow rate achievable by the HPLC instrument. At the same time, the detector of choice today is the mass spectrometer, which can tolerate only much... [Pg.96]

Miniaturizing the column i.d. is of great benefit to the sensitivity of ESl-MS, which behaves as a concentration-sensitive detection principle, because the concentration of equally abundant components in the LC mobile phase is proportional to the square of the column internal diameter. Column diameters from 150 to 15 jm with flow rates 20-200nL improve detection limits of peptides 1-2 orders magnitude over microliter flow rates. Several references referred to in other sections of this chapter discuss the use of LC-ESI MS to characterize separation products. and a sample chromatogram from Ito and coworkers. is seen in Figure 3.8. Table 3.4 provides additional and references that have used this technique. [Pg.88]


See other pages where Limiting Flow Rates Column Diameter is mentioned: [Pg.358]    [Pg.358]    [Pg.320]    [Pg.288]    [Pg.442]    [Pg.311]    [Pg.20]    [Pg.440]    [Pg.250]    [Pg.39]    [Pg.168]    [Pg.410]    [Pg.253]    [Pg.254]    [Pg.206]    [Pg.44]    [Pg.115]    [Pg.375]    [Pg.82]    [Pg.37]    [Pg.254]    [Pg.281]    [Pg.489]    [Pg.628]    [Pg.813]    [Pg.207]    [Pg.238]    [Pg.463]    [Pg.520]    [Pg.551]    [Pg.190]    [Pg.119]    [Pg.258]    [Pg.260]    [Pg.326]    [Pg.111]    [Pg.33]    [Pg.38]    [Pg.53]    [Pg.3]    [Pg.91]    [Pg.519]    [Pg.617]    [Pg.618]   


SEARCH



Column diameter

Rate limitations

Rate limiting

© 2024 chempedia.info