Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lead, electrochemistry

The literature concerning electrochemical sensors, where lead electrochemistry can be applied, is extremely vast. Therefore, only some representative papers will be presented. More information can be found in recent reviews [420-423]. [Pg.828]

Thousands of articles have been published on Li electrochemistry and Li battery technology in leading electrochemistry journals, most of which cannot be covered in a single chapter. However, we list representative papers on Li electrochemistry, divided into different subjects ... [Pg.314]

A. T. Kuhn (ed.). The Electrochemistry of Lead, Academic Press, London, 1977, 467 pp. H. Bode, Lead-Acid Batteries, Wiley, New York, 1977, 408 pp. [Pg.371]

Kuhn, A. T. ed. The Electrochemistry of Lead, Academic Press, London (1979)... [Pg.738]

The concentration of the solution within the glass bulb is fixed, and hence on the inner side of the bulb an equilibrium condition leading to a constant potential is established. On the outside of the bulb, the potential developed will be dependent upon the hydrogen ion concentration of the solution in which the bulb is immersed. Within the layer of dry glass which exists between the inner and outer hydrated layers, the conductivity is due to the interstitial migration of sodium ions within the silicate lattice. For a detailed account of the theory of the glass electrode a textbook of electrochemistry should be consulted. [Pg.557]

J. Burbank, A.C. Simon, E. Willihnganz, The lead acid cell, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 8, John Wiley, New York, 1971, p. 170. [Pg.174]

The slow protonation rate of the conjugated anion of the sulphone (1st step) leads to the obtainment of a pseudo one-electron process. However, no self-protonatiori process exists in the presence of an excess of a proton donor of lower pKa than that of the electroactive substrate and Figure 6a, curve 2 shows evidence for a two-electron step. Full substitution on the a carbon, as in the case of phenyl 2-phenylbut-2-yl sulphone, does not allow one to observe any deactivation (Figure 6b, curve 1). It is worth mentioning that cathodic deactivations of acidic substrates in aprotic solvents are rather general in electrochemistry, e.g. aromatic ketones behave rather similarly, showing deprotonation of the substrate by the dianion of the carbonyl compound39. [Pg.1028]

Electrochemical impedance spectroscopy leads to information on surface states and representative circuits of electrode/electrolyte interfaces. Here, the measurement technique involves potential modulation and the detection of phase shifts with respect to the generated current. The driving force in a microwave measurement is the microwave power, which is proportional to E2 (E = electrical microwave field). Therefore, for a microwave impedance measurement, the microwave power P has to be modulated to observe a phase shift with respect to the flux, the transmitted or reflected microwave power APIP. Phase-sensitive microwave conductivity (impedance) measurements, again provided that a reliable theory is available for combining them with an electrochemical impedance measurement, should lead to information on the kinetics of surface states and defects and the polarizability of surface states, and may lead to more reliable information on real representative circuits of electrodes. We suspect that representative electrical circuits for electrode/electrolyte interfaces may become directly determinable by combining phase-sensitive electrical and microwave conductivity measurements. However, up to now, in this early stage of development of microwave electrochemistry, only comparatively simple measurements can be evaluated. [Pg.461]

As in aqueous electrochemistry it appears that application of a potential between the two terminal (Au) electrodes leads to charge separation on the Pt film so that half of it is charged positively and half negatively8 thus establishing two individual galvanic cells. The Pt film becomes a bipolar electrode and half of it is polarized anodically while the other half is polarized cathodically. The fact that p is smaller (roughly half) than that obtained upon anodic polarization in a classical electrochemical promotion experiment can be then easily explained. [Pg.523]

What impressed me particularly was the wealth of high standard theoretical electrochemistry in discussions of the mechanism of NEMCA, for one seldom sees publications showing so much erudition in the theory of electrified surfaces. On the other hand, the book contains a very full treatment, rich in examples, of the practical and experimental side of NEMCA and thus will be attractive to the chemists and chemical engineers who serve in corporate research laboratories. It is likely to lead to advances in industrial... [Pg.582]

In this method the creation of defects is achieved by the application of ultrashort (10 ns) voltage pulses to the tip of an electrochemical STM arrangement. The electrochemical cell composed of the tip and the sample within a nanometer distance is small enough that the double layers may be polarized within nanoseconds. On applying positive pulses to the tip, the electrochemical oxidation reaction of the surface is driven far from equilibrium. This leads to local confinement of the reactions and to the formation of nanostructures. For every pufse applied, just one hole is created directly under the tip. This overcomes the restrictions of conventional electrochemistry (without the ultrashort pulses), where the formation of nanostructures is not possible. The holes generated in this way can then be filled with a metal such as Cu by... [Pg.681]

Four major areas of electrochemistry related to medical diagnostics have been reviewed. Blood pH and gas measurements as well as ISE s represent relatively mature areas which enjoy widespread commercialization. New approaches should yield devices which have superior performance and which are less expensive to produce. Enzyme electrodes and electrochemical immunoassay arc still largely experimental, but the intense level of current research effort coupled with some interesting recent developments should lead to commercial success over the next decade. [Pg.50]

The electrolyte was a solution of ammonium chloride that bathed the electrodes. Like Plante s electrochemistry of the lead-acid battery, Leclanche s electrochemistry survives until now in the form of zinc-carbon dry cells and the use of gelled electrolyte.12 In their original wet form, the Leclanche electrochemistry was neither portable nor practicable to the extent that several modifications were needed to make it practicable. This was achieved by an innovation made by J. A. Thiebaut in 1881, who through encapsulating both zinc cathode and electrolyte in a sealed cup avoided the leakage of the liquid electrolyte. Modern plastics, however, have made Leclanche s chemistry not only usable but also invaluable in some applications. For example, Polaroid s Polar Pulse disposable batteries used in instant film packs use Leclanche chemistry, albeit in a plastic sandwich instead of soup bowls.1... [Pg.1305]

Electrochemistry and spectroscopy of the tt cation radical of meso-tetraalkylchlorin (tetra-methyl) and various porphyrins (tetramethyl, tetraethyl, and tetra-ra-propyl) indicate that these do not convert to Nim at low temperatures.280 Optical evidence reveals, however, that oxidation of the tt cation radical of [Ni(pEt2N)(TPP)] leads to a Ni111 cation radical which can be further oxidized to a Ni111 porphyrin dication. Similar studies have been carried out for various other derivatives of me.so-tetraarylporphyrins such as /V-oxides of TPP and 5,10,15,20-tetramesitylpro-phyrin (TMP). Addition of trifluoroacetic acid (TFA) to the /V-oxide of [NinTMP] at —25 °C in CH2C12 results in [Nim(TMP)]+ with a rhombic EPR spectrum, g = 2.40, 2.12, and 2.04.281... [Pg.269]


See other pages where Lead, electrochemistry is mentioned: [Pg.1948]    [Pg.441]    [Pg.285]    [Pg.1154]    [Pg.1161]    [Pg.1374]    [Pg.197]    [Pg.233]    [Pg.624]    [Pg.520]    [Pg.197]    [Pg.244]    [Pg.352]    [Pg.528]    [Pg.584]    [Pg.400]    [Pg.160]    [Pg.298]    [Pg.625]    [Pg.232]    [Pg.72]    [Pg.105]    [Pg.124]    [Pg.72]    [Pg.192]    [Pg.129]    [Pg.347]    [Pg.430]    [Pg.1304]    [Pg.1307]    [Pg.439]    [Pg.52]   
See also in sourсe #XX -- [ Pg.204 , Pg.205 , Pg.212 , Pg.214 , Pg.219 , Pg.220 , Pg.225 , Pg.226 , Pg.235 , Pg.236 , Pg.238 , Pg.242 , Pg.243 ]




SEARCH



© 2024 chempedia.info