Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clays layered

Talc and Pyrophyllite. Talc (qv) and pyrophjlhte are 2 1 layer clay minerals having no substitution in either the tetrahedral or octahedral layer. These are electrostatically neutral particles (x = 0) and may be considered ideal 2 1 layer hydrous phyUosiHcates. The stmctural formula of talc, the trioctahedral form, is Mg3Si402Q(0H)2 and the stmctural formula of pyrophylUte, the dioctahedral form, is Al2Si402Q (OH)2 (106). Ferripyrophyllite has the same stmcture as pyrophylUte, but has ferric iron instead of aluminum in the octahedral layer. Because these are electrostatically neutral they do not contain interlayer materials. These minerals are important in clay mineralogy because they can be thought of as pure 2 1 layer minerals (106). [Pg.197]

Mixed-layer clays, particularly lUite—smectite, are very common minerals and illustrate the transitional nature of the 2 1 layered siHcates. The transition from smectite to iUite occurs when smectite, in the presence of potassium from another mineral such as potassium feldspar, or from thermal fluids, is heated and/or buried. With increasing temperature smectite plus potassium is converted to iUite (37,39). [Pg.200]

An alternative description of iUite—smectite mixed-layer clays begins with megacrystals of smectite that incorporate smaller packets of iUite (163). These constituents are observed as mixed-layer minerals in x-ray analysis. Diagenesis increases the percentage of iUite layer and with increasing alteration the mixed-layer mineral takes on the characteristics of an iUite dominated iUite—smectite. [Pg.200]

Chlorite is another mineral that is commonly associated with mixed-layered clays. Complete soHd solutions of chlorite mixed-layer minerals have not been identified. In contrast to iUite—smectite mixed-layer minerals, chlorite mixed-layer minerals occur either as nearly equal proportions of end-member minerals (Rl) or dominated by one end member (RO) (142). Mixed-layer chlorite may consist of any of the di—tri combinations of chlorite and chlorite mixed-layering occurs with serpentine, kaolinite, talc, vermicuhte, smectite, and mica. References of specific chlorite mixed-layer minerals of varied chemical compositions are available (142,156). [Pg.200]

Three main types of composites can be formed when the layered clay is incorporated with a polymer, as shown in Figure 2 (Alexandre and Dubois, 2000). Types of composites formed mostly depend on the nature of the components used (layered silicate, organic cation and polymer matrix) and the method of preparation. [Pg.32]

Fig. 2. Three types of composites when layered clays are incorporated with the polymer (Alexandre and Dubois, 2000)... Fig. 2. Three types of composites when layered clays are incorporated with the polymer (Alexandre and Dubois, 2000)...
Mixed layer clay mineral (sericite/smectite) is found in Kuroko ore bodies and altered dacitic rocks underlying the ore. This mineral is thought to have formed by the... [Pg.29]

Main gangue minerals of the Se-type deposits comprise quartz, adularia, illite/ smectite interstratified mixed layer clay mineral, chlorite/smectite interstratified mixed layer clay mineral, smectite, calcite, Mn-carbonates, manganoan caleite, rhodoehrosite, Mn-silicates (inesite, johannsenite) and Ca-silicates (xonotlite, truscottite). [Pg.98]

In eomparison, the Te-type deposits contain fine-grained quartz, chalcedonic quartz, sericite, barite, adularia, ehlorite/smectite interstratified mixed layer clay mineral and rarely anatase. Carbonates and Mn-minerals are very poor in the Te-type deposits and they do not coexist with Te-minerals. Carbonates are abundant and barite is absent in the Se-type deposits. The grain size of quartz in the Te-type deposits is very fine, while large quartz crystals are common in the Se-type deposits although they formed in a late stage and do not coexist with Au-Ag minerals. [Pg.98]

Principal gangue minerals in base-metal vein-type deposits are quartz, chlorite, Mn-carbonates, calcite, siderite and sericite (Shikazono, 1985b). Barite is sometimes found. K-feldspar, Mn-silicates, interstratified mixed layer clay minerals (chlorite/smectite, sericite/smectite) are absent. Vuggy, comb, cockade, banding and brecciated textures are commonly observed in these veins. [Pg.98]

Zeolite minerals (wairakite, laumontite etc.), mixed-layer clay minerals and sme-cite occur in the upper part of the propylitically altered rocks (e.g., Seigoshi, Fuke, Kushikino), but they are sometimes poor in amounts. Generally carbonates are more abundant in the mine area as in the Toyoha district. Temporal relationship between the formation of high temperature propylitic alteration minerals (epidote, actinolite, prehnite) and low temperature propylitic alteration minerals) (wairakite, laumontite, chlorite/smectite, smectite) in these areas (Seigoshi, Fuke, Kushikino) is uncertain. [Pg.99]

Seigoshi argentite electrum, pearceite, polybasite, pyrargyrite, stephanite, chalcopyrite, fahore, galena, sphalerite quartz, adularia, inesite, xonotlite, chlorite, mixed layer clay mineral, sericite. calcite, rhodochrosite... [Pg.163]

Fine particle migration can occur in the absence of water-swelling clays. Migrating fines can include the migrating clays kaolinite, illite, chlorite, and some mixed layer clays and fine silica particles (162,163). Fine particle migration is promoted when the... [Pg.25]

Figure 2 shows us the N2 adsorption-desorption isotherm of Beta/montmorillonite composite. At low relative pressure a sharp adsorption of nitrogen indicates the existence of large amount of micropore. The hysteresis shown in figure 2 is ascribed to type H4 which usually can be observed on layered clay and other materials [2], It is obvious that part of the pore structure in montmorillonite is still preserved after calcination under high temperature and the following hydrothermal crystallization. [Pg.138]

Standard cations used for measuring cation exchange capacity are Na+, NHJ, and Ba2+. NH is often used but it may form inner-sphere complexes with 2 1 layer clays and may substitute for cations in easily weathered primary soil minerals. In other words, one has to adhere to detailed operational laboratory procedures these need to be known to interpret the data and it is difficult to come up with an operationally determined "ion exchange capacity" that can readily be conceptualized unequivocally. [Pg.130]

Sorption depends on Sorption Sites. The sorption of alkaline and earth-alkaline cations on expandable three layer clays - smectites (montmorillonites) - can usually be interpreted as stoichiometric exchange of interlayer ions. Heavy metals however are sorbed by surface complex formation to the OH-functional groups of the outer surface (the so-called broken bonds). The non-swellable three-layer silicates, micas such as illite, can usually not exchange their interlayer ions but the outside of these minerals and the weathered crystal edges ("frayed edges") participate in ion exchange reactions. [Pg.140]

In terms of composition, the simplest of the marine clay minerals is kaolinite in which tetrahedral and octahedral layers alternate (Figure 14.5a) creating a two-layer repeating imit. In three-layer clays, the repeating unit is composed of an octahedral... [Pg.354]

The CEC of clay minerals is partly the result of adsorption in the interlayer space between repeating layer units. This effect is greatest in the three-layer clays. In the case of montmorillonite, the interlayer space can expand to accommodate a variety of cations and water. This causes montmorillonite to have a very high CEC and to swell when wetted. This process is reversible the removal of the water molecules causes these clays to contract. In illite, some exchangeable potassium is present in the interlayer space. Because the interlayer potassium ions are rather tightly held, the CEC of this illite is similar to that of kaolinite, which has no interlayer space. Chlorite s CEC is similar to that of kaolinite and illite because the brucite layer restricts adsorption between the three-layer sandwiches. [Pg.358]

Over longer time scales, clay minerals can undergo more extensive reactions. For example, fossilization of fecal pellets in contact with a mixture of clay minerals and iron oxides produces an iron- and potassium-rich, mixed-layer clay called glauconite. This mineral is a common component of continental shelf sediments. Another example of an authigenic reaction is called reverse weathering. In this process, clay minerals react with seawater or porewater via the following general scheme ... [Pg.362]

This information is reported as the percentage that each of the clay mineral type contributes to total identifiable clay mineral content of the noncarbonate clay-sized fraction of the surface sediments. These percentages were determined by x-ray diffraction, which is luiable to identify noncrystalline solids. Using this technique, clay minerals were found to comprise about 60% of the mass of carbonate-free fine-grained fraction. Most of the noncrystalline soUds are probably mixed-layer clay minerals. Carbonate was removed to facilitate the x-ray diffraction characterization of the clay minerals. In some cases, roimd off errors cause the sum of the percentages of kaolinite, illite, montmorillonite, and chlorite to deviate slightly from 100%. [Pg.371]

Kaolin - Kaolinite 4, 5, 6, Dickite 16. 27 Mica - Biotite, Phologopite, Muscovite Illite - Illite 36, Illite-Bearing Shale Mixed-Layer Clays - Metabentonite 37, 42 Montmorillonite - 21. 22A, 22B, 24, 25, 26. 31 Feldspars - Albite, Anorthite, Orthoclase Chlorite - Chlorite... [Pg.46]

The problem with limited selectivity includes some of the minerals which are problems for XRD illite, muscovite, smectites and mixed-layer clays. Poor crystallinity creates problems with both XRD and FTIR. The IR spectrum of an amorphous material lacks sharp distinguishing features but retains spectral intensity in the regions typical of its composition. The X-ray diffraction pattern shows low intensity relative to well-defined crystalline structures. The major problem for IR is selectivity for XRD it is sensitivity. In an interlaboratory FTIR comparison (7), two laboratories gave similar results for kaolinite, calcite, and illite, but substantially different results for montmorillonite and quartz. [Pg.48]

Layered clay silicates, generally from the intermediate-grained montmorillonite kaolin clay, are often used as filler in plastics and in the production of pottery and other ceramic items. These silicates consist of the silicate sheets held together mostly by the sodium cation with lesser amounts of other metal ions, such as iron, copper, nickel, etc. There are several approaches to open these silicate layers. [Pg.250]

The aged pillaring reagents were heated to 65 C and 325 bentonite, American Colloid Company, whose major constituent is the layered clay mineral, montmorilIonite, was added. There was always a 5-fold excess of aluminum in solution and the volume of solution per gram of clay was always 45 cc/g or more. The reaction was carried out for 2 hours. The slurry was filtered and the solids washed two times with water, dried, sized, and calcined at 500 C for 2 hours in air. [Pg.255]


See other pages where Clays layered is mentioned: [Pg.182]    [Pg.193]    [Pg.195]    [Pg.199]    [Pg.2256]    [Pg.45]    [Pg.656]    [Pg.30]    [Pg.99]    [Pg.163]    [Pg.166]    [Pg.25]    [Pg.221]    [Pg.3]    [Pg.362]    [Pg.591]    [Pg.298]    [Pg.354]    [Pg.355]    [Pg.361]    [Pg.50]    [Pg.51]    [Pg.51]    [Pg.427]   
See also in sourсe #XX -- [ Pg.1273 ]

See also in sourсe #XX -- [ Pg.107 ]




SEARCH



Clay layers

Clay layers

Clay layers bridging polymers

Clay minerals exfoliated layers

Clay minerals mixed-layer clays

Clay minerals, layer lattice

Clay minerals, layered silicates

Clays and layered silicates

Expandable layer clay minerals

Illite/smectite mixed-layer clays

Inorganic layered clay minerals

Layer silicate clays

Layer silicate clays 1:1 type

Layered clay catalysts

Layered clay mineral smectites

Layered clay minerals

Layered double hydroxides anionic clays

Mixed-layer clay minerals

Mixed-layer clays

Octahedral layers, clay minerals

Other mixed-layer clay minerals

Pillared Clays and Layered Silicates

Pillared clays layers

Pillared layered clays

Polymer layered clay dispersion

Silicate clays layer charge

Smectite clays layer rigidity

Smectite clays, layer lattice structures

Structure studies layered clay minerals

Three-layer clays

Three-layer clays methods

Two-layer clays

Unit layers, clay

© 2024 chempedia.info