Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Latex micellar

Based on the Smith-Ewart theory, the number of latex particles formed and the rate of polymerization in Interval II is proportional with the 0,6 power of the emulsifier concentration. This relation was also observed experimentally for the emulsion polymerization of styrene by Bartholomeet al. [51], Dunn and Al-Shahib [52] demonstrated that when the concentrations of the different emulsifiers were selected so that the micellar concentrations were equal, the same number of particles having the same size could be obtained by the same polymerization rates in Interval II in the existence of different emulsifiers [52], The number of micelles formed initially in the polymerization medium increases with the increasing emulsifier concentration. This leads to an increase in the total amount of monomer solubilized by micelles. However, the number of emulsifier molecules in one micelle is constant for a certain type of emulsifier and does not change with the emulsifier concentration. The monomer is distributed into more micelles and thus, the... [Pg.197]

We begin the discussion of EPM by elaborating on this physical picture. Figure 1 shows a typical emulsion CSTR reactor and polymerization recipe. The magnified portion of the latex shows the various phases and the major species involved. The latex consists of monomers, water, surfactant, initiator, chain transfer agent, and added electrolyte. We used the mechanism for particle formation as described in Feeney et al. (8-9) and Hansen and Ugelstad (2). We have not found it necessary to invoke the micellar entry theory 2, 2/ 6./ 11/ 12/ 14. [Pg.361]

Salt effects in polyelectrolyte block copolymer micelles are particularly pronounced because the polyelectrolyte chains are closely assembled in the micellar shell [217]. The situation is quite reminiscent of tethered polymer brushes, to which polyelectrolyte block copolymer micelles have been compared, as summarized in the review of Forster [15]. The analogy to polyelectrolyte brushes was investigated by Guenoun in the study of the behavior of a free-standing film drawn from a PtBS-PSSNa-solution [218] and by Hari-haran et al., who studied the absorbed layer thickness of PtBS-PSSNa block copolymers onto latex particles [219,220]. When the salt concentration exceeded a certain limit, a weak decrease in the layer thickness with increasing salt concentration was observed. Similar results have been obtained by Tauer et al. on electrosterically stabilized latex particles [221]. [Pg.113]

To illustrate how the effect of the adsorption on the modulus of the filled gel may be modelled we consider the interaction of the same HEUR polymer as described above but in this case filled with poly(ethylmetha-crylate) latex particles. In this case the particle surface is not so hydrophobic but adsorption of the poly (ethylene oxide) backbone is possible. Note that if a terminal hydrophobe of a chain is detached from a micellar cluster and is adsorbed onto the surface, there is no net change in the number of network links and hence the only change in modulus would be due to the volume fraction of the filler. It is only if the backbone is adsorbed that an increase in the number density of network links is produced. As the particles are relatively large compared to the chain dimensions, each adsorption site leads to one additional link. The situation is shown schematically in Figure 2.13. If the number density of additional network links is JVL, we may now write the relative modulus Gr — G/Gf as... [Pg.47]

The reaction described in this example is carried out in miniemulsion.Miniemulsions are dispersions of critically stabilized oil droplets with a size between 50 and 500 nm prepared by shearing a system containing oil, water,a surfactant and a hydrophobe. In contrast to the classical emulsion polymerization (see 5ect. 2.2.4.2), here the polymerization starts and proceeds directly within the preformed micellar "nanoreactors" (= monomer droplets).This means that the droplets have to become the primary locus of the nucleation of the polymer reaction. With the concept of "nanoreactors" one can take advantage of a potential thermodynamic control for the design of nanoparticles. Polymerizations in such miniemulsions, when carefully prepared, result in latex particles which have about the same size as the initial droplets.The polymerization of miniemulsions extends the possibilities of the widely applied emulsion polymerization and provides advantages with respect to copolymerization reactions of monomers with different polarity, incorporation of hydrophobic materials, or with respect to the stability of the formed latexes. [Pg.187]

Nevertheless micelles are normally present during Interval I of an emulsion polymerization in which latex particles are nucleated. Micellar nucleation of latex particles is dominant for monomers which have only a low solubility in water (e.g. styrene). For such a monomer any effect of micellar catalysis is likely to be revealed by an increase in the number of latex particles formed which would also result in an increased rate of polymerization. The thermal emulsion polymerization cited above seem to be a prima facie case of micellar catalysis. The thermal emulsion polymerization of styrene is investigated further here. [Pg.469]

Substrate-catalyst interaction is also essential for micellar catalysis, the principles of which have long been established and consistently described in detail [63-66]. The main feature of micellar catalysis is the ability of reacting species to concentrate inside micelles, which leads to a considerable acceleration of the reaction. The same principle may apply for polymer systems. An interesting way to concentrate the substrate inside polymer catalysts is the use of cross-linked amphiphilic polymer latexes [67-69]. Liu et al. [67] synthesized a histidine-containing resin which was active in hydrolysis of p-nitrophenyl acetate (NPA). The kinetics curve of NPA decomposition in the presence of the resin was of Michaelis-Menten type, indicating that the catalytic act was accompanied by sorption of the substrate. However, no discussion of the possible sorption mechanisms (i.e., sorption by the interfaces or by the core of the resin beads) was presented. [Pg.196]

In the conventional emulsion polymerization, monomer droplets are dispersed ip an aqueous phase containing micellar aggregates of surfactant. In this case, the dispersed phase represents a relatively small volume fraction of the system and the micellar aggregates constitute the sites of the polymerization process. In the gel(paste)-like emulsions employed here, the volume fraction of the dispersed phase can be as high as 0.99, and the cells of the concentrated emulsion lead to the polymerized latex particles. [Pg.18]

Reimers and Schork [94, 95] report the use of PMMA to stabihze MM A miniemulsions enough to effect predominant droplet nucleation. Emulsions stabilized against diffusional degradation by incorporating a polymeric costabilizer were produced and polymerized. The presence of large numbers of small droplets shifted the nucleation mechanism from micellar or homogeneous nucleation, to droplet nucleation. Droplet diameters were in the miniemulsion range and reasonably narrowly distributed. On-hne conductance measurements were used to confirm predominant droplet nucleation. The observed reaction rates were dependent on the amount of polymeric costabilizer present. The latexes prepared with polymeric costabilizer had lower polydispersities (1.006) than either latexes prepared from macroemulsions (1.049) or from alkane-stabilized miniemulsions (1.037). [Pg.153]

In polymerizations where desorption is very high, all micelles grow simultaneously. This is because radical absorption is followed almost iimiediately by desorption with only a brief micellar growth period. As a result, all micelles experience an equal but intermittant growth. The number of latex particles is determined solely by the number of micelles initially present. The number of micelles, m, is given by the expression... [Pg.159]

Although emulsion polymerization has been carried out for at least 50 years and has enormous economic importance, the detailed quantitative behavior of these reactors is still not well understood. For example, there are many more mechanisms and phenomena reported experimentally than have been incorporated in the existing theories. Considerations such as non-micellar particle formation, non-uniform particle morphologies, polymer chain end stabilization of latex particles, particle coalescence, etc. have been discussed qualitatively, but not quantitatively included in existing reactor models. [Pg.359]

Copolymers 59 [181] and terpolymers 60 [182] were synthesized by micellar copolymerization and characterized with respect to their molecular and solution properties. The subject of further investigations was the interaction with low molecular weight surfactants [181,183]. Another interesting use was made of hydrophobized sulfopropylammonio monomers as surface-active monomers (or surfmers ) [184]. Their use in emulsifler-free emulsion polymerizations [185] reduced the water uptake and improved the mechanical stability of the resulting filmed latexes. [Pg.181]

Once a micelle is stung, polymerization proceeds very rapidly. The particle can accommodate more monomer as its polymer content increases and the water-polymer interfacial surface increases concuirently. Tlie new surface adsorbs emulsifier molecules from the aqueous phase. This disturbs the equilibrium between micellar and dissolved soap, and micelles will begin to disintegrate as the concentration of molecularly dissolved emulsifier is restored to its equilibrium value. Thus the formation of one polymer particle leads to the disappearance of many micelles. The initial latex will usually contain about 10 micelles per milliliter water, but there will be only about 10 particles of polymer in the same volume of the final emulsion. When all the micelles have disappeared, the surface tension of the system increases because there is little surfactant left in solution. Any tendency for the mixture to foam while it is being stirred decreases at this time. [Pg.287]

When the concentration of emulsifiers are chosen so that the micellar concentrations are equal (although total concentration may differ greatly), the size of the latex particles formed is the same. This means that the number of latex particles formed is also the same and, consequently, the Interval II rates of polymerization are also the same (Dunn and Al-Shahib, 1980). The duration of Interval I does increase for tbe more weakly adsorbed emulsifiers, however (Fig. 2). [Pg.234]

There continues to be extensive interest in latexes and micellar systems. The structure of acrylic latex particles has been investigated by non-radiative energy transfer by labelling the co-monomers with fluorescent acceptor-donor systems. Phase separations could also be measured in this way. Excimer fluorescence has been used to measure the critical micelle temperature in diblock copolymers of polystyrene with ethylene-propylene and the results agree well with dynamic light scattering measurements. Fluorescence anisotropy has been used to measure adsorption isotherms of labelled polymers to silica as well as segmental relaxation processes in solutions of acrylic polymers. In the latter case unusual interactions were indicated between the polymers and chlorinated hydrocarbon solvents. Fluorescence analysis of hydrophobically modifled cellulose have shown the operation of slow dynamic processes while fluorescence... [Pg.367]


See other pages where Latex micellar is mentioned: [Pg.2597]    [Pg.276]    [Pg.211]    [Pg.211]    [Pg.317]    [Pg.57]    [Pg.171]    [Pg.40]    [Pg.52]    [Pg.9]    [Pg.239]    [Pg.114]    [Pg.34]    [Pg.115]    [Pg.140]    [Pg.214]    [Pg.228]    [Pg.124]    [Pg.60]    [Pg.223]    [Pg.227]    [Pg.228]    [Pg.231]    [Pg.234]    [Pg.235]    [Pg.261]    [Pg.343]    [Pg.7]    [Pg.14]    [Pg.354]    [Pg.355]    [Pg.868]    [Pg.868]    [Pg.870]   
See also in sourсe #XX -- [ Pg.473 ]




SEARCH



Micellar nucleation of latex particles

© 2024 chempedia.info