Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser dynamics, characteristics

The ability to create and observe coherent dynamics in heterostructures offers the intriguing possibility to control the dynamics of the charge carriers. Recent experiments have shown that control in such systems is indeed possible. For example, phase-locked laser pulses can be used to coherently amplify or suppress THz radiation in a coupled quantum well [5]. The direction of a photocurrent can be controlled by exciting a structure with a laser field and its second harmonic, and then varying the phase difference between the two fields [8,9]. Phase-locked pulses tuned to excitonic resonances allow population control and coherent destruction of heavy hole wave packets [10]. Complex filters can be designed to enhance specific characteristics of the THz emission [11,12]. These experiments are impressive demonstrations of the ability to control the microscopic and macroscopic dynamics of solid-state systems. [Pg.250]

From a theoretical perspective, the object that is initially created in the excited state is a coherent superposition of all the wavefunctions encompassed by the broad frequency spread of the laser. Because the laser pulse is so short in comparison with the characteristic nuclear dynamical time scales of the motion, each excited wavefunction is prepared with a definite phase relation with respect to all the others in the superposition. It is this initial coherence and its rate of dissipation which determine all spectroscopic and collisional properties of the molecule as it evolves over a femtosecond time scale. For IBr, the nascent superposition state, or wavepacket, spreads and executes either periodic vibrational motion as it oscillates between the inner and outer turning points of the bound potential, or dissociates to form separated atoms, as indicated by the trajectories shown in Figure 1.3. [Pg.9]

The historical development and elementary operating principles of lasers are briefly summarized. An overview of the characteristics and capabilities of various lasers is provided. Selected applications of lasers to spectroscopic and dynamical problems in chemistry, as well as the role of lasers as effectors of chemical reactivity, are discussed. Studies from these laboratories concerning time-resolved resonance Raman spectroscopy of electronically excited states of metal polypyridine complexes are presented, exemplifying applications of modern laser techniques to problems in inorganic chemistry. [Pg.454]

From the point of view of the study of dynamics, the laser has three enormously important characteristics. Firstly, because of its potentially great time resolution, it can act as both the effector and the detector for dynamical processes on timescales as short as 10 - s. Secondly, due to its spectral resolution and brightness, the laser can be used to prepare large amounts of a selected quantum state of a molecule so that the chemical reactivity or other dynamical properties of that state may be studied. Finally, because of its coherence as a light source the laser may be used to create in an ensemble of molecules a coherent superposition of states wherein the phase relationships of the molecular and electronic motions are specified. The dynamics of the dephasing of the molecular ensemble may subsequently be determined. [Pg.469]

Laser ablation of TiC targets was studied by De Maria et al. (1997). TiC films were realized on oriented [111] silicon. During ablation the chamber was kept under a dynamic vacuum (1.5 10 4 Pa) the laser fluence was varied in the range 0-15 J/cm2. Different ablation mechanisms, corresponding to different film characteristics, were observed related to the laser fluence values. At low fluence values (0-3 J/cm2), a film of composition TiC2 was obtained. Films obtained at 3-8 J/cm2 showed a composition close to TiC they had the best characteristics of composition, crystallinity and compactness. [Pg.595]

Experiments were conducted in our laboratory to evaluate many of the dynamical expectations for rapid laser heating of metals. One of the aims of this work was to identify those population distributions which were characteristic of thermally activated desorption processes as opposed to desorption processes which were driven by nontbennal energy sources. Visible and near-infrared laser pulses of nominally 10 ns duration were used to heat the substrate in a nonspecific fashion. Initial experiments were performed by Burgess etal. for the laser-induced desorption of NO from Pt(foil). Operating with a chamber base pressure 2 x 10 torr and with the sample at 200 K, initial irradiation of a freshly cleaned and dosed sample resulted in a short time transient (i.e. heightened desorption yield) followed by nearly steady state LID signals. The desorption yields slowly decreased with time due to depletion of the adsorbate layer at the rate of ca. 10 monolayer... [Pg.68]

Let us briefly discuss the characteristics of the nonadiabatic dynamics exhibited by this model. Assuming an initial preparation of the S2 state by an ideally short laser pulse. Fig. 1 displays in thick lines the first 500 fs of the quantum-mechanical time evolution of the system. The population probability of the diabatic S2 state shown in Fig. lb exhibits an initial decay on a timescale of 20 fs, followed by quasi-peiiodic recurrences of the population, which are... [Pg.257]

As a specific example to study the characteristics of the controller, the problem involving four modes of longitudinal oscillations is considered herein. The natural radian frequency of the fundamental mode, normalized with respect to 7ra/L, is taken to be unity. The nominal linear parameters Dni and Eni in Eq. (22.12) are taken from [1], representing a typical situation encountered in several practical combustion chambers. An integrated research project comprising laser-based experimental diagnostics and comprehensive numerical simulation is currently conducted to provide direct insight into the combustion dynamics in a laboratory dump combustor [27]. Included as part of the results are the system and actuator parameters under feedback actions, which can... [Pg.366]

Here we present additional data in order to extract a characteristic control frequency and establish a detailed picture of the laser-chromophore interaction and the ensuing dynamics. This work demonstrates the use of coherent control as a valuable tool for the spectroscopy of complex molecules. [Pg.91]


See other pages where Laser dynamics, characteristics is mentioned: [Pg.198]    [Pg.356]    [Pg.99]    [Pg.784]    [Pg.2493]    [Pg.2863]    [Pg.443]    [Pg.2]    [Pg.239]    [Pg.101]    [Pg.221]    [Pg.244]    [Pg.611]    [Pg.64]    [Pg.36]    [Pg.48]    [Pg.135]    [Pg.194]    [Pg.343]    [Pg.46]    [Pg.284]    [Pg.7]    [Pg.247]    [Pg.253]    [Pg.104]    [Pg.61]    [Pg.54]    [Pg.253]    [Pg.3]    [Pg.75]    [Pg.471]    [Pg.472]    [Pg.291]    [Pg.670]    [Pg.194]    [Pg.467]    [Pg.115]    [Pg.134]    [Pg.218]    [Pg.184]    [Pg.115]   


SEARCH



Dynamic characteristics

Lasers Characteristics

© 2024 chempedia.info