Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals laser-directed deposition

There are three types of electrolytic metal deposition processes direct current electrodeposition, pulse plating, and laser-induced metal deposition. ... [Pg.843]

Deposition of Thin Films. Laser photochemical deposition has been extensively studied, especially with respect to fabrication of microelectronic stmctures (see Integrated circuits). This procedure could be used in integrated circuit fabrication for the direct generation of patterns. Laser-aided chemical vapor deposition, which can be used to deposit layers of semiconductors, metals, and insulators, could define the circuit features. The deposits can have dimensions in the micrometer regime and they can be produced in specific patterns. Laser chemical vapor deposition can use either of two approaches. [Pg.19]

Donor adducts of aluminum and gallium trihydride were the subject of considerable interest in the late 1960s and early 1970s.1 Thin-film deposition and microelectronic device fabrication has been the driving force for the recent resurgence of synthetic and theoretical interest in these adducts of alane and gallane.24 This is directly attributable to their utility as low-temperature, relatively stable precursors for both conventional and laser-assisted CVD,59 and has resulted in the commercial availability of at least one adduct of alane. The absence of direct metal-carbon bonds in adducts of metal hydrides can minimize the formation of deleterious carbonaceous material during applications of CVD techniques, in contrast to some metal alkyl species.10, 11... [Pg.77]

This process uses a moving laser beam, directed by a computer, to prepare the model. The model is made up of layers having thicknesses about 0.005-0.020 in. (0.012-0.50 mm) that are polymerized into a solid product. Advanced techniques also provides fast manufacturing of precision molds (152). An example is the MIT three-dimensional printing (3DP) in which a 3-D metal mold (die, etc.) is created layer by layer using powdered metal (300- or 400-series stainless steel, tool steel, bronze, nickel alloys, titanium, etc.). Each layer is inkjet-printed with a plastic binder. The print head generates and deposits micron-sized droplets of a proprietary water-based plastic that binds the powder together. [Pg.179]

The hybridizing component can also be formed directly on the surface of a pristine or modified nanocarbon using molecular precursors, such as organic monomers, metal salts or metal organic complexes. Depending on the desired compound, in situ deposition can be carried out either in solution, such as via direct network formation via in situ polymerization, chemical reduction, electro- or electroless deposition, and sol-gel processes, or from the gas phase using chemical deposition (i.e. CVD or ALD) or physical deposition (i.e. laser ablation, electron beam deposition, thermal evaporation, or sputtering). [Pg.134]

Lasers have been used to initiate deton in RDX. Three types of initiation mechanisms have been described (Ref 102) (1) instantaneous deton caused by a shock wave in a thin metallic film (deposited on the expl) with the shock wave generated by a Q-switched laser pulse (2) instantaneous deton by direct interaction of a Q switched laser pulse and the test expl and (3) DDT produced by free-running laser pulses. Coarse RDX cannot be initiated, but milled RDX (particle size less than 40 microns) is readily initiated at various packing densities. The threshold fluences for the initiation of 1.18g/cc l,52g/cc milled RDX via mechanism (1) are 45,3J/cm2 and 127.9J/cm2, respectively. Detons are either essentially instantaneous or the sample bums without deton. For direct initiation [mechanism (2)], the threshold laser energy for 1.18g/cc RDX was 0.8J, or the same as in thin film initiation. However, deton was no longer instantaneous but required about 2 microsec for build-up. The 1.52g/cc RDX was initiated directly without delay (laser energy not given)... [Pg.154]

Bando and co-workers271 have prepared BN nanolubes by the reaction of MgO, FeO and B in the presence of NH, at 1400 °C. Reaction of boric acid or B20, with N2 or NH, at high temperatures in the presence of carbon or catalytic metal particles has been employed in the preparation of BN nanotubes.2 2 Boron nitride nanotubes can be grown directly on substrates at 873 K by a plasma-enhanced laser-deposition technique.172 Recently, GaN nanotube brushes have been prepared using amorphous carbon nanotubes templates obtained using AAO membranes.274... [Pg.493]


See other pages where Metals laser-directed deposition is mentioned: [Pg.77]    [Pg.77]    [Pg.93]    [Pg.492]    [Pg.135]    [Pg.299]    [Pg.318]    [Pg.293]    [Pg.61]    [Pg.403]    [Pg.78]    [Pg.563]    [Pg.283]    [Pg.283]    [Pg.301]    [Pg.381]    [Pg.179]    [Pg.707]    [Pg.369]    [Pg.155]    [Pg.234]    [Pg.19]    [Pg.423]    [Pg.354]    [Pg.142]    [Pg.142]    [Pg.261]    [Pg.84]    [Pg.148]    [Pg.340]    [Pg.729]    [Pg.1285]    [Pg.654]    [Pg.415]    [Pg.44]    [Pg.117]    [Pg.236]    [Pg.268]    [Pg.57]    [Pg.345]    [Pg.340]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Direct metalation

Direct metallation

Metal deposition

Metallation directed

Metallic metal deposits

© 2024 chempedia.info