Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser ablation-inductively coupled plasma mass spectrometry

Dobney AM. Mank AJG, Conneely P, Grobecker K-H, de Roster CG (2000) Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool for studying heterogeneity within polymers. Submitted for publication... [Pg.43]

Becker JS, Pickhardt C, Dietze H-J (2000) Laser ablation inductively coupled plasma mass spectrometry for the trace, ultratrace and isotope analysis of long-lived radionuclides in solid samples. Inti J Mass Spectrom 202 283-297... [Pg.55]

Guillong M, Gunther D (2002) Effect of particle size distribution on ICP-induced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry. J Anal At Spectrom 7 831-837 Gunther D (2002) Laser-ablation inductively coupled plasma mass spectrometry. Anal Bioanal Chem 372 31-32... [Pg.56]

Poitrasson, X.L., Mao, S.S., Freydier, R., Russo, R.E. 2003. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon. Analytical Chemistry, 75, 6184-6190. [Pg.298]

Durrant, S.F. and Ward, N.I. (1993). Rapid multielemental analysis of Chinese reference soils by laser ablation inductively coupled plasma mass spectrometry. Fresenius Journal of Analytical Chemistry 345 512-517. [Pg.71]

Watling, R.J., Herbert, H.K., Delev, D. and Abell, I.D. (1994). Gold fingerprinting by laser-ablation inductively-coupled plasma-mass spectrometry. Spectrochimica Acta B49 205-219. [Pg.344]

In the museum context, nondestructive (or quasi-nondestructive) techniques such as X-ray fluorescence (XRF) (Chapter 5) are often preferred for the analysis of inorganic objects, although microanalysis by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) (Chapter 9) is growing in importance, since the ablation craters are virtually invisible to the naked eye. Raman and infrared spectroscopy (Chapter 4) are now being used for structural information and the identification of corrosion products to complement X-ray diffraction (Section 5.4). [Pg.30]

Evans, R. D. and Outridge, P. M. (1994). Applications of laser ablation inductively coupled plasma mass spectrometry to the determination of environmental contaminants in calcified biological structures. Journal of Analytical Atomic Spectroscopy 9 985-989. [Pg.362]

Figg, D.J., Cross, J. B., and Brink, C. (1998). More investigations into elemental fractionation resulting from laser ablation inductively coupled plasma mass spectrometry on glass samples. Applied Surface Science 129 287-291. [Pg.363]

Jeffries, T. E., Pearce, N. J. G., Perkins, W.T., and Raith, A. (1996). Chemical fractionation during infrared and ultraviolet laser ablation inductively coupled plasma mass spectrometry - implications for mineral micro analysis. Analytical Communications 33 35-39. [Pg.370]

Lee, K. M., Appleton, J., Cooke, M., Keenan, F., and Sawicka-Kapusta, K. (1999). Use of laser ablation inductively coupled plasma mass spectrometry to provide element versus time profiles in teeth. Analytica Chimica Acta 395 179-185. [Pg.373]

Morrison, C. A., Lambert, D. D., Morrison, R. J. S., Ahlers, W. W., and Nicholls, I. A. (1995). Laser ablation-inductively coupled plasma-mass spectrometry an investigation of elemental responses and matrix effects in the analysis of geostandard materials. Chemical Geology 119 13-29. [Pg.376]

Raith, A., Hutton, R. C., Abell, I. D., and Crighton, J. (1995). Non-destructive sampling method of metals and alloys for laser ablation-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectroscopy 10 591-594. [Pg.380]

Watmough, S. A., Hutchinson, T. C., and Evans, R. D. (1996). Application of laser ablation inductively coupled plasma - mass spectrometry in dendrochemical analysis. Environmental Science and Technology 31 114-118. [Pg.388]

LA-ICP-MS Laser-ablation inductively-coupled plasma mass spectrometry... [Pg.684]

M. Resano, F. Vanhaecke, D. Hutsebaut, K. De Corte and K. Monees, Posibilities of laser ablation-inductively coupled plasma-mass spectrometry for diamong fingerprinting, J. Anal. At. Spectrom., 18, 2003, 1238-1242. [Pg.243]

R Keenan, M. Cooke, and J. Appleton, Trace Element Profiting of Dental Tissues Using Laser Ablation Inductively Coupled Plasma-Mass Spectrometry Fresenius J. Anal. Chem. 1996, 354.254.]... [Pg.453]

Selected Applications of Laser Ablation Inductively Coupled Plasma-Mass Spectrometry to Archaeological Research... [Pg.275]

Trace elemental analysis of ancient ceramics has been proven a very useful tool for tracing the circulation of this material. Instrumental neutron activation analysis (INAA) was for years the analytical technique of choice to measure the composition of ceramics because of the large number of elements it could determine and its good sensitivity. Lately, a few publications have shown that laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) could provide similar results as INAA more quickly and at lower cost. A protocol has been developed to determine 51 elements using LA-ICP-MS and tested it on Wari period ceramics previously analyzed using INAA. We show how INAA and LA-ICP-MS analysis lead to the same conclusion in terms of sample groupings. [Pg.349]

Since the mid-1960s, a variety of analytical chemistry techniques have been used to characterize obsidian sources and artifacts for provenance research (4, 32-36). The most common of these methods include optical emission spectroscopy (OES), atomic absorption spectroscopy (AAS), particle-induced X-ray emission spectroscopy (PIXE), inductively coupled plasma-mass spectrometry (ICP-MS), laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray fluorescence spectroscopy (XRF), and neutron activation analysis (NAA). When selecting a method of analysis for obsidian, one must consider accuracy, precision, cost, promptness of results, existence of comparative data, and availability. Most of the above-mentioned techniques are capable of determining a number of elements, but some of the methods are more labor-intensive, more destructive, and less precise than others. The two methods with the longest and most successful histoty of success for obsidian provenance research are XRF and NAA. [Pg.527]


See other pages where Laser ablation-inductively coupled plasma mass spectrometry is mentioned: [Pg.287]    [Pg.295]    [Pg.448]    [Pg.376]    [Pg.20]    [Pg.623]    [Pg.177]    [Pg.334]    [Pg.340]    [Pg.355]    [Pg.370]    [Pg.479]    [Pg.336]   
See also in sourсe #XX -- [ Pg.269 ]




SEARCH



Ablate

Ablation

Ablator

Ablators

Coupled Plasma

Coupled spectrometry

Coupling spectrometry

Couplings mass spectrometry

Induction-coupled plasma

Inductive coupled plasma

Inductive coupled plasma mass spectrometry

Inductive coupling

Inductively couple plasma

Inductively couple plasma mass spectrometry

Inductively coupled

Inductively coupled mass spectrometry

Inductively coupled plasma mass

Inductively coupled plasma mass spectrometry

Inductively mass spectrometry

Laser ablation

Laser ablation inductively coupled plasma

Laser ablation-inductively coupled

Laser inductively coupled plasma-mass

Laser inductively coupled plasma-mass spectrometry

Laser mass spectrometry

Laser spectrometry

Lasers plasma

Mass plasma

Mass spectrometry laser ablation inductively coupled

Plasma ablation

Plasma laser ablation

Plasma mass spectrometry

Plasma spectrometry)

© 2024 chempedia.info