Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Landfill Runoff

Home use of paints, cleaners, and other chemical products Pharmaceuticals released to sewer lines Disinfection of water Landfill runoff. [Pg.491]

Mercury (inorganic) 0.002 0.002 Kidney damage Erosion of natural deposits discharge from refineries and factories runoff from landfills and cropland... [Pg.18]

Polychlorinated biphenyls (PCBs) zero 0.0005 Skin changes thymus gland problems immune deficiencies reproductive or nervous system difficulties increased risk of cancer Runoff from landfils discharge of waste chemicals... [Pg.22]

The harmful liquid that collects at the bottom of a landfill is known as leachate. The generation of leachate is a result of uncontrolled runoff, and percolation of precipitation and irrigation water into the landfill. Leachate can also include the moisture content initially contained in the waste, as well as infiltrating groundwater. Leachate contains a variety of chemical constituents derived from the solubilization of the materials deposited in the landfill and from the products of the chemical and biochemical reactions occurring within the landfill under the anaerobic conditions. [Pg.573]

Many factors influence the production and composition of leachate. One major factor is the climate of the landfill. For example, where the climate is prone to higher levels of precipitation, there will be more water entering the landfill and therefore more leachate generated. Another factor is the site topography of the landfill, which influences the runoff patterns and again the water balance within the site. [Pg.573]

Factors Affecting Amount and Rate of Surface Runoff from ET Landfill Covers... [Pg.1068]

Surface runoff (Q) is the second-largest part of the hydrologic water balance for ET landfill covers at many sites in humid regions. Even at dry sites where surface runoff is small, errors in estimates of Q are important, and especially so if the model estimates significant Q on days with no runoff. Estimates of Q are therefore important to the design process at all sites. [Pg.1068]

Development of the Environmental Policy Integrated Climate (EPIC) model and its predecessor, the Erosion Productivity Impact Calculator, began in the early 1980s.69 70 The first version of EPIC was intended to evaluate the effects of wind and water erosion on plant growth and food production. More recent versions also evaluate factors important to other environmental issues. EPIC is a onedimensional model however, it can estimate lateral flow in soil layers at depth. All versions of EPIC estimate surface runoff, PET, AET, soil-water storage, and PRK below the root zone—these complete the hydrologic water balance for an ET landfill cover. [Pg.1075]

Heavy metals have the potential to enter the water supply from the leachate or runoff from landfills. It is estimated that nonrecycled lead-acid batteries produce about 65% of the lead in the municipal waste stream. When burned, some heavy metals such as mercury may vaporize and escape into the air, and cadmium and lead may end up in the ash, making the ash a hazardous material for disposal. [Pg.1226]

Land disposal sites result in soil contamination through leachate migration. The composition of the substances produced depends principally on the type of wastes present and the decomposition in the landfill (aerobic or anaerobic). The adjacent soil can be contaminated by direct horizontal leaching of surface runoff vertical leaching and transfer of gases from decomposition by diffusion and convection. The disposal of... [Pg.43]

The WFD, so far, has identified 33 priority hazardous pollutants (PHS), for which Environmental Quality Standards (EQS) have been set. To some extent, these EQS can be met through the establishment of emission control measures. These PHS may originate from several different sources and activities. The main sources of toxic substances to water bodies in Europe may be categorised as agriculture, sewage treatment plants, urban runoff, industry, contaminated lake/ river sediment, soils and landfills. Input via atmospheric transport and deposition has also been identified as an important source both far from and close to source areas. Many of the PS are today banned in Europe, but due to their persistence they are still present in the environment [30]. [Pg.400]

Pesticides in wastewaters come typically from point sources of contamination such as disposal sites and landfills where industrial or agricultural wastes are buried without any consideration, as well as discharges from industrial effluents from pesticide production plants. Furthermore, nonpoint sources derived from regular agricultural activities, especially in intensive agricultural areas, and accidental spills can also be significant. Urban use of pesticides is also possible in large cities where the use of herbicides and insecticides may result in runoff into the sewers. These sewers in turn may expel pesticides into wastewater treatment plants (WWTPs). [Pg.53]

Trace metals (arsenic, cadmium, chromium, copper, nickel, lead, mercury, zinc) Industrial and municipal wastewaters runoff from urban areas and landfill erosion of contaminated soils and sediments atmospheric deposition Toxic effects including birth defects, reproductive failure, cancer, and systemic poisoning. [Pg.769]

The Ecolotree buffer uses phytoremediation, or plant processes, for environmental remediation purposes. Ecolotree buffers can be used to reduce the migration of subsurface water and surface runoff, while also acting as an in situ remediation technique for both organic and heavy-metal contaminants, including benzene, toluene, ethylbenzene, and xylene (BTEX) chlorinated solvents ammunition wastes and excess nutrients in soil or water. The technology is commercially available and has been used at landfill and waste treatment sites. [Pg.518]

A landfill can be seen as a spatially heterogeneous porous and, by design, unsaturated system. Flow paths and physical mechanisms of runoff generation play a crucial role for the hydrology and ultimately leaching reactions within a landfill. Figure 1 illustrates the flow... [Pg.608]

The sources of urban pollutants are municipal sewage, runoff from city streets and landfills, and industrial effluents. Indirectly solvents contribute to municipal sewage, insofar as they comprise part of the landfill and runoffs. Mostly, industrial effluents have solvent components. [Pg.24]


See other pages where Landfill Runoff is mentioned: [Pg.114]    [Pg.115]    [Pg.65]    [Pg.90]    [Pg.90]    [Pg.114]    [Pg.115]    [Pg.65]    [Pg.90]    [Pg.90]    [Pg.82]    [Pg.86]    [Pg.141]    [Pg.185]    [Pg.310]    [Pg.390]    [Pg.622]    [Pg.1076]    [Pg.1077]    [Pg.1137]    [Pg.43]    [Pg.212]    [Pg.175]    [Pg.80]    [Pg.29]    [Pg.14]    [Pg.174]    [Pg.297]    [Pg.79]    [Pg.410]    [Pg.80]    [Pg.609]    [Pg.610]   
See also in sourсe #XX -- [ Pg.114 ]




SEARCH



Landfilling

Landfills

Runoff

Toxic Landfill Runoff

© 2024 chempedia.info