Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lactic acid polymerization

Polylactic acid (PLA) is the second common biopolymer that is produced by microbial fermentation. It is thermoplastic aliphatic polyester that can be synthesized from biologically produced lactic acid polymerized by ring opening polymerization. Lactic acid is a chiral molecule existing as two stereoisomers, L- and D-lactic acid, which can be produced by different ways, i.e., biologically or chemically synthesized [Averous, 2008). [Pg.192]

Furthermore, carboxyl and hydroxyl reactive chain extenders were used together in lactic acid polymerization by Tuominen et al. The addition of highly reactive chain extenders during the final step of polycondensation led to polymers with higher... [Pg.863]

FIGURE 14 MP/SSPreaction for lactic acid polymerization (adopted from Moon etal., 2001). [Pg.134]

Polylactide is a kind of biodegradable polyester that possesses many desirable properties such as non-toxicity, hydrolyzability and biocompatibility for use for varied biomedical purposes such as sutures, fracture fixation, oral implant and drug delivery microspheres.It is popularly synthesized by the ringopening polymerization of lactide monomers which are the cyclic dimers of lactic acid. Polymerization of racemic D,L-lactide typically results in atactic, amorphous polymers named poly(D,L-lactide) (rg 60 °C), whereas polymerization of L-lactide or D-lactide results in isotactic, semicrystalline polymers called poly(L-lactide) or poly(D-lactide) (7" 180 PLA fractures... [Pg.259]

Polylactide is the generaUy accepted term for highly polymeric poly(lactic acid)s. Such polymers are usuaUy produced by polymerization of dilactide the polymerization of lactic acid as such does not produce high molecular weight polymers. The polymers produced from the enantiomeric lactides are highly crystalline, whereas those from the meso lactide are generaUy amorphous. UsuaUy dilactide from L-lactic acid is preferred as a polymerization feedstock because of the avaUabUity of L-lactic acid by fermentation and for the desirable properties of the polymers for various appUcations (1,25). [Pg.512]

Polylactic acid, also known as polylactide, is prepared from the cycHc diester of lactic acid (lactide) by ring-opening addition polymerization, as shown below ... [Pg.190]

Braided Synthetic Absorbable Sutures. Suture manufacturers have searched for many years to find a synthetic alternative to surgical gut. The first successful attempt to make a synthetic absorbable suture was the invention of polylactic acid [26023-30-3] suture (15). The polymer was made by the ring-opening polymerization of L-lactide [95-96-5] (1), the cycUc dimer of L-lactic acid. [Pg.267]

RAFT polymerization has been used to prepare poly(ethylene oxide)-/ /wA-PS from commercially available hydroxy end-functional polyethylene oxide).4 5 449 Other block copolymers that have been prepared using similar strategies include poly(ethylene-co-butylene)-6/oci-poly(S-eo-MAH), jl poly(ethylene oxide)-block-poly(MMA),440 polyethylene oxide)-Moe -poly(N-vinyl formamide),651 poly(ethylene oxide)-Wot A-poly(NlPAM),651 polyfethylene ox de)-b ock-polyfl,1,2,2-tetrahydroperfluorodecyl acrylate),653 poly(lactic acid)-block-poly(MMA)440 and poly( actic acid)-6focA-poly(NIPAM),4 8-<>54... [Pg.546]

Polylactides, 18 Poly lactones, 18, 43 Poly(L-lactic acid) (PLLA), 22, 41, 42 preparation of, 99-100 Polymer age, 1 Polymer architecture, 6-9 Polymer chains, nonmesogenic units in, 52 Polymer Chemistry (Stevens), 5 Polymeric chiral catalysts, 473-474 Polymeric materials, history of, 1-2 Polymeric MDI (PMDI), 201, 210, 238 Polymerizations. See also Copolymerization Depolymerization Polyesterification Polymers Prepolymerization Repolymerization Ring-opening polymerization Solid-state polymerization Solution polymerization Solvent-free polymerization Step-grown polymerization processes Vapor-phase deposition polymerization acid chloride, 155-157 ADMET, 4, 10, 431-461 anionic, 149, 174, 177-178 batch, 167 bulk, 166, 331 chain-growth, 4 continuous, 167, 548 coupling, 467 Friedel-Crafts, 332-334 Hoechst, 548 hydrolytic, 150-153 influence of water content on, 151-152, 154... [Pg.597]

The living nature of PCL obtained in the presence of Zn(OAl-(OPri)2)2 has been used to prepare both di- and triblock copolymers of e-caprolactone and lactic acid (42,43). Treatment of the initial living PCL with dilactide afforded a PCL-PLA diblock with M /Mn = 1.12, with each block length determined by the proportions of the reactants, i.e., the ratio of [monomer]/[Zn]. While the living diblock copolymer continued to initiate dilactide polymerization, it failed to initiate e-caprolactone polymerization. To obtain a PCL-PLA-PCL triblock, it was necessary to treat the living PCL-PLA-OAIR2 intermediate with ethylene oxide, then activate the hydroxy-terminated PCL-PLA-(OCH2CH2)nOH with a modified Teyssie catalyst (Fig. 5). [Pg.78]

Polylactic acid (PLA) has been produced for many years as a high-value material for use in medical applications such as dissolvable stitches and controlled release devices, because of the high production costs. The very low toxicity and biodegradability within the body made PLA the polymer of choice for such applications. In theory PLA should be relatively simple to produce by simple condensation polymerization of lactic acid. Unfortunately, in practice, a competing depolymerization process takes place to produce the cyclic lactide (Scheme 6.10). As the degree of polymerization increases the rate slows down until the rates of depolymerization and polymerization are the same. This equilibrium is achieved before commercially useful molecular weights of PLA have been formed. [Pg.197]

The solution to this problem has been to isolate the lactide and to polymerize this directly using a tin(ii) 2-(ethyl)hexanoate catalyst at temperatures between 140 and 160 °C. By controlling the amounts of water and lactic acid in the polymerization reactor the molecular weight of the polymer can be controlled. Since lactic acid exists as d and L-optical isomers, three lactides are produced, d, l and meso (Scheme 6.11). The properties of the final polymer do not depend simply on the molecular weight but vary significantly with the optical ratios of the lactides used. In order to get specific polymers for medical use the crude lactide mix is extensively recrystallized, to remove the meso isomer leaving the required D, L mix. This recrystallization process results in considerable waste, with only a small fraction of the lactide produced being used in the final polymerization step. Hence PLA has been too costly to use as a commodity polymer. [Pg.198]

The polymerization of a ring compound usually proceeds by an interchange reaction, induced either catalytically or by the presence of small amounts of end-group-producing substances. For example, the polymerization of lactide, the cyclic dimer of lactic acid, is accelerated by small amounts of water. The water undoubtedly hydrolyzes the lactide to lactyllactic acid, which may then react with other lactide molecules by ester interchange. This reaction scheme can be represented as follows ... [Pg.59]

Complexes of tetravalent zirconium with organic acids, such as citric, tartaric, malic, and lactic acids, and a complex of aluminum and citric acid have been claimed to be active as dispersants. The dispersant is especially useful in dispersing bentonite suspensions [288]. Polymers with amine sulfide terminal moieties are synthesized by using aminethiols as chain transfer agents in aqueous addition polymerizations. The polymers are useful as mineral dispersants [1182]. [Pg.24]

In addition to solvent uses, esters of lactic acid can be used to recover pure lactic acid via hydrolysis, which in-tum is used to make optically active dilactide and subsequently polylactic acid used for drag delivery system.5 This method of recovery for certain lactic acid applications is critical in synthesis of medicinal grade polymer because only optically active polymers with low Tg are useful for drug delivery systems. Lactic acid esters themselves can also be directly converted into polymers, (Figure 1), although the commercial route proceeds via ring-opening polymerization of dilactide. [Pg.374]

Figure 13.1.2 The molecular structure of glycolic acid, lized species. Lactic acid (Fig. 13.1.3) has also been polymerized into poly(lactic... Figure 13.1.2 The molecular structure of glycolic acid, lized species. Lactic acid (Fig. 13.1.3) has also been polymerized into poly(lactic...
Figure 13.1.4 The synthesis of poly(lactic acid) (PLA) by a ring-opening polymerization of the cyclic diester of lactic acid (lactide). Figure 13.1.4 The synthesis of poly(lactic acid) (PLA) by a ring-opening polymerization of the cyclic diester of lactic acid (lactide).
Lactide was polymerized by lipase PC in bulk at high temperature (80-130°C) to produce poly(lactic acid) with Mw up to 2.7 x 105 [64, 65]. The molecular weight of the polymer from the D,L-isomer was higher than that from the d,d- and L,L-ones. Protease (proteinase K) also induced the polymerization of lactide, however, the catalytic activity was relatively low. [Pg.248]

Bipyridine-centered triblock copolymers of the type BA-bpy-AB were prepared by a combination of ATRP and ROMP [159]. 4,4 -Bis(hydroxymelhyl)-2,2/-bipyridine was employed for the polymerization of lactic acid, LA or CL in the presence of Sn(Oct)2 in bulk at 130 and 110°C, respectively. The hydroxyl end groups were converted to tertiary or secondary bromo esters by reaction with 2-bromoisobutyryl bromide or 2-bromopropionyl bromide. The reaction yields were very high (> 80%) but not quantitative. These products were used as macroinitiators for the ATRP of MMA or tBuA in the presence of CuBr/HMTETA. 4,4/-bis(Chloromethyl)-2,2 -bipyridine was employed to promote the ATRP of MMA or styrene followed by the addition... [Pg.95]

A range of tetradentate Schiff-base ligands have also been employed to prepare discrete aluminum alkoxides. The most widely studied system is the unsubstituted parent system (256), which initiates the controlled ROP of rac-LA at 70 °C in toluene. The polymerization displays certain features characteristic of a living process (e.g., narrow Mw/M ), but is only well behaved to approximately 60-70% conversion thereafter transesterification causes the polydispersity to broaden.788 MALDI-TOF mass spectroscopy has been used to show that even at low conversions the polymer chains contain both even and odd numbers of lactic acid repeat units, implying that transesterification occurs in parallel with polymerization in this system.789... [Pg.40]

The enantiomorphic site selectivity of (R)-(—)-(263) allows highly syndiotactic PLA to be prepared via the polymerization of meso-LA (Mn = 12,030, Mn calc= 13,540, Mw/Mn= 1.05).802 The ring opening of meso-LA by (R)-(—)-(263) occurs to produce a syndiotactic propagating chain bound to the metal via an (S)-lactic acid unit.803 Attempts to produce syndiotactic PLA via the ROP of meso-LA using rac-( )-(263) instead afforded heterotactic-biased material. [Pg.41]


See other pages where Lactic acid polymerization is mentioned: [Pg.864]    [Pg.362]    [Pg.225]    [Pg.74]    [Pg.23]    [Pg.203]    [Pg.864]    [Pg.362]    [Pg.225]    [Pg.74]    [Pg.23]    [Pg.203]    [Pg.449]    [Pg.514]    [Pg.514]    [Pg.515]    [Pg.516]    [Pg.149]    [Pg.270]    [Pg.14]    [Pg.228]    [Pg.41]    [Pg.85]    [Pg.99]    [Pg.28]    [Pg.2]    [Pg.71]    [Pg.198]    [Pg.197]    [Pg.470]    [Pg.252]    [Pg.167]    [Pg.866]    [Pg.114]    [Pg.36]    [Pg.71]   
See also in sourсe #XX -- [ Pg.258 ]

See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Condensation polymerization lactic acid

Polymerization of Lactic Acid

© 2024 chempedia.info