Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction intermediates kinetics

The following mechanism was proposed to account for die observed kinetics, reaction intermediates, and final products ... [Pg.22]

DebtHio O, Thevenet F, Gravejat P, Hequet V, Raillard C, Le Coq L, Locoge N (2013) Gas phase photocatalyticoxidatirai of decane at ppb levels removal kinetics, reaction intermediates and cartxm mass balance. J Photochem Photobiol A 258 17-29... [Pg.240]

Qin L, Tripathi G N R and Schuler R H 1987 Radiolytic oxidation of 1,2,4-benzenetriol an application of time-resolved resonance Raman spectroscopy to kinetic studies of reaction intermediates J. Chem. Phys. [Pg.1227]

The bimodal profile observed at low catalyst concentration has been explained by a combination of two light generating reactive intermediates in equihbrium with a third dark reaction intermediate which serves as a way station or delay in the chemiexcitation processes. Possible candidates for the three intermediates include those shown as "pooled intermediates". At high catalyst concentration or in imidazole-buffered aqueous-based solvent, the series of intermediates rapidly attain equihbrium and behave kineticaHy as a single kinetic entity, ie, as pooled intermediates (71). Under these latter conditions, the time—intensity profile (Fig. 2) displays the single maximum as a biexponential rise and fall of the intensity which is readily modeled as a typical irreversible, consecutive, unimolecular process ... [Pg.267]

The composition of the products of reactions involving intermediates formed by metaHation depends on whether the measured composition results from kinetic control or from thermodynamic control. Thus the addition of diborane to 2-butene initially yields tri-j iAbutylboraneTri-j -butylborane. If heated and allowed to react further, this product isomerizes about 93% to the tributylborane, the product initially obtained from 1-butene (15). Similar effects are observed during hydroformylation reactions however, interpretation is more compHcated because the relative rates of isomerization and of carbonylation of the reaction intermediate depend on temperature and on hydrogen and carbon monoxide pressures (16). [Pg.364]

All other spectroscopic methods are applicable, in principle, to the detection of reaction intermediates so long as the method provides sufficient structural information to assist in the identification of the transient species. In the use of all methods, including those discussed above, it must be remembered that simple detection of a species does not prove that it is an intermediate. It also must be shown that the species is converted to product. In favorable cases, this may be done by isolation or trapping experiments. More often, it may be necessary to determine the kinetic behavior of the appearance and disappearance of the intermediate and demonstrate that this behavior is consistent with the species being an intermediate. [Pg.228]

They varied only the values of the adsorption and desorption rate constants of the reaction intermediate B, and by using the simplest Langmuir kinetics, they calculated time-concentration curves of compounds A, B, and C shown in Fig. 5. Also from this example, which does not consider any step as clearly rate determining, it is evident how very different concentration versus time plots can be obtained for the same sequence of surface reactions if adsorption and desorption of the intermediate B proceed by different rates, which are, however, comparable with the rate of surface reactions. In particular, the curves in the first and second columns of Fig. 5 simulate the parallel formation of substances B and C, at least... [Pg.15]

The kinetics of hydrogenation of phenol has already been studied in the liquid phase on Raney nickel (18). Cyclohexanone was proved to be the reaction intermediate, and the kinetics of single reactions were determined, however, by a somewhat simplified method. The description of the kinetics of the hydrogenation of phenol in gaseous phase on a supported palladium catalyst (62) was obtained by simultaneously solving a set of rate equations for the complicated reaction schemes containing six to seven constants. The same catalyst was used for a kinetic study also in the liquid phase (62a). [Pg.32]

Here we plan to devote further attention to reaction intermediates. The methods used to verify the intervention of an intermediate include trapping. That is, the intermediate can be diverted from its normal course by a substance deliberately added. A new product may be isolated as a result, which may aid in the identification of the intermediate. One can also apply competition kinetics to construct a scale of relative reactivity, wherein a particular intermediate reacts with a set of substrates. Certain calibration reactions, such as free radical clocks, can be used as well to provide absolute reactivities. [Pg.101]

For most real systems, particularly those in solution, we must settle for less. The kinetic analysis will reveal the number of transition states. That is, from the rate equation one can count the number of elementary reactions participating in the reaction, discounting any very fast ones that may be needed for mass balance but not for the kinetic data. Each step in the reaction has its own transition state. The kinetic scheme will show whether these transition states occur in succession or in parallel and whether kinetically significant reaction intermediates arise at any stage. For a multistep process one sometimes refers to the transition state. Here the allusion is to the transition state for the rate-controlling step. [Pg.126]

Relaxation kinetics with a reaction intermediate. Show that the kinetic scheme with a steady-state intermediate I corresponds to the single relaxation time shown ... [Pg.269]

A reader familiar with the first edition will be able to see that the second derives from it. The objective of this edition remains the same to present those aspects of chemical kinetics that will aid scientists who are interested in characterizing the mechanisms of chemical reactions. The additions and changes have been quite substantial. The differences lie in the extent and thoroughness of the treatments given, the expansion to include new reaction schemes, the more detailed treatment of complex kinetic schemes, the analysis of steady-state and other approximations, the study of reaction intermediates, and the introduction of numerical solutions for complex patterns. [Pg.293]

A new chapter (5) on reaction intermediates develops a number of methods for trapping them and characterizing their reactivity. The use of kinetic probes is also presented. The same chapter presents the Runge-Kutta and Gear methods for simulating concentration-time profiles for complex reaction schemes. Numerical methods now assume greater importance, since useful computer programs are available. The treatment of pH profiles in Chapter 6 is much more detailed. [Pg.293]

The primary interaction of singlet oxygen, produced by energy transfer from the excited sensitizer, with the diene can give rise to an exciplet that then collapses to peroxide, to a 1,4-biradical or to a 1,4-zwitterion alternatively, the adduct is the result of a concerted action without the involvement of an intermediate. Detailed kinetic Diels-Alder investigations of singlet oxygen and furans indicate that the reactions proceed concertedly but are asynchronous with the involvement of an exciplex as the primary reaction intermediate [63]. [Pg.169]

In the majority of examples in the Uterature, the desired product is obtained by applying a single fixed potential. It is also possible, however, to programme the electrode potential to change in a pre-determined manner, and this is commonly done in studies of reaction intermediates and the kinetics of electrode processes. Thus, cyclic voltammetry (Adams,... [Pg.163]

The theory was very similar to that described earlier, but was simplified in view of the complexity of the problem. A number of reaction intermediates were considered explicitly, and the corresponding signals were calculated by molecular dynamics simulation. Kinetic equations governing the reaction sequence were established and were solved numerically. The main simplification of the theory is that, when calculating A5[r, r], the lower limit of the Fourier integral was shifted from 0 to a small value q. The authors wrote [59]... [Pg.277]

In solving the kinetics of a catalytic reaction, what is the difference between the complete solution, the steady-state approximation, and the quasi-equilibrium approximation What is the MARI (most abundant reaction intermediate species) approximation ... [Pg.403]

On this basis Cr(V), not Cr(IV), is the kinetically important intermediate such that k = 3 k4 and k = k Jk. The hydrogen-ion dependence of the reaction rate has been discussed. Furthermore, comparisons are drawn with the rate of the Cr(VI)+Fe(phen)3 reaction, and Sullivan has speculated on the intimate nature of both mechanisms in the light of Marcus theory... [Pg.167]

Much of the pioneering work which led to the discovery of efficient catalysts for modern Industrial catalytic processes was performed at a time when advanced analytical Instrumentation was not available. Insights Into catalytic phenomena were achieved through gas adsorption, molecular reaction probes, and macroscopic kinetic measurements. Although Sabatier postulated the existence of unstable reaction Intermediates at the turn of this century. It was not until the 1950 s that such species were actually observed on solid surfaces by Elschens and co-workers (2.) using Infrared spectroscopy. Today, scientists have the luxury of using a multitude of sophisticated surface analytical techniques to study catalytic phenomena on a molecular level. Nevertheless, kinetic measurements using chemically specific probe molecules are still the... [Pg.26]

In the present study, the HDN of decahydroq unohne (DHQ) was studied over NiMo(P)/Al20.T catalysts in the presence and absence of H2S. The reaction took place at 593 K and 3.0 MPa, thus allowing us to observe the most important reaction intermediate, propylcyclohexylamine, and to calculate the kinetic constants from the experimental results. Rate and adsorption constants for the different reaction steps were determined by separate and by combined HDN studies of DHQ and cyclohexene. [Pg.88]

It also explains the /Z selectivity of products at low conversions (kinetic ratio. Scheme 19). In the case of propene, a terminal olefin, E 2-butene is usually favoured (E/Z - 2.5 Scheme 19), while Z 3-heptene is transformed into 3-hexene and 4-octene with EjZ ratios of 0.75 and 0.6, respectively, which shows that in this case Z-olefins are favoured (Scheme 20). At full conversion, the thermodynamic equilibriums are reached to give the -olefins as the major isomers in both cases. For terminal olefins, the E olefin is the kinetic product because the favoured pathway involved intermediates in which the [ 1,2]-interactions are minimized, that is when both substituents (methyls) are least interacting. In the metathesis of Z-olefins, the metallacyclobutanes are trisubstituted, and Z-olefins are the kinetic products because they invoke reaction intermediates in which [1,2] and especially [1,3] interactions are minimized. [Pg.174]

Sepa DB, Vojnovic MV, Damjanovic A. 1981. Reaction intermediates as a controlling factor in the kinetics and mechanism of oxygen reduction at platinum electrodes. Electrochim Acta 26 781-793. [Pg.339]

The time-dependent, rapid freeze-quench Mossbauer experiments with M. capsulatus (Bath) (51) indicate that decay of the peroxo species proceeds with the concomitant formation of another intermediate, named compound Q. This intermediate, observed in both the M. tri-chosporium OB3b (69, 70) and M. capsulatus (Bath) (51, 71) MMO systems by Mossbauer and optical spectroscopy, decays faster in the presence of substrates. Such behavior indicates that this intermediate is probably on the kinetic reaction pathway for hydroxylation (51, 70). [Pg.280]


See other pages where Reaction intermediates kinetics is mentioned: [Pg.194]    [Pg.194]    [Pg.318]    [Pg.12]    [Pg.1164]    [Pg.2]    [Pg.38]    [Pg.129]    [Pg.383]    [Pg.240]    [Pg.214]    [Pg.435]    [Pg.518]    [Pg.87]    [Pg.89]    [Pg.335]    [Pg.292]    [Pg.654]    [Pg.103]    [Pg.124]    [Pg.273]    [Pg.253]    [Pg.255]    [Pg.127]    [Pg.98]    [Pg.203]    [Pg.1025]   
See also in sourсe #XX -- [ Pg.165 , Pg.176 ]




SEARCH



Intermediates kinetics

Kinetic identification of reaction intermediates

Reaction Intermediates Determined from Kinetic Data

Transient kinetics, enzyme reactions product formation, 151-5 intermediate

Transient kinetics, enzyme reactions reaction intermediates identification

© 2024 chempedia.info