Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics differential scanning

Cure kinetics of thermosets are usually deterrnined by dsc (63,64). However, for phenohc resins, the information is limited to the early stages of the cure because of the volatiles associated with the process. For pressurized dsc ceUs, the upper limit on temperature is ca 170°C. Differential scanning calorimetry is also used to measure the kinetics and reaction enthalpies of hquid resins in coatings, adhesives, laminations, and foam. Software packages that interpret dsc scans in terms of the cure kinetics are supphed by instmment manufacturers. [Pg.301]

The techniques referred to above (Sects. 1—3) may be operated for a sample heated in a constant temperature environment or under conditions of programmed temperature change. Very similar equipment can often be used differences normally reside in the temperature control of the reactant cell. Non-isothermal measurements of mass loss are termed thermogravimetry (TG), absorption or evolution of heat is differential scanning calorimetry (DSC), and measurement of the temperature difference between the sample and an inert reference substance is termed differential thermal analysis (DTA). These techniques can be used singly [33,76,174] or in combination and may include provision for EGA. Applications of non-isothermal measurements have ranged from the rapid qualitative estimation of reaction temperature to the quantitative determination of kinetic parameters [175—177]. The evaluation of kinetic parameters from non-isothermal data is dealt with in detail in Chap. 3.6. [Pg.23]

Chiao employed differential scanning calorimetry to obtain the kinetic reaction parameters needed in Equation 5 as ... [Pg.276]

KNUDSEN J c, ANTANUSE H s, RisBO j and SKIBSTED L H (2002) Induction time and kinetics of crystallization of amorphous lactose, infant formula and whole milk powder as studied by isothermal differential scanning calorimetry, Milchwissenschaft, 57, 543-546. [Pg.343]

This work discusses the thermal crosslinking and isomerization reactions occurring in the acetylene terminated isoimide prepolymer Thermid IP600. The techniques of Fourier Transform Infrared Spectrometry and Differential Scanning Calorimetry are used to determine the contribution of these two reactions during the thermal cure including their kinetics at 183° C. [Pg.459]

Figure 10 Oscillating differential scanning calorimetric (ODSC) curves showing the separation of the glass transition (reversible, i.e., thermodynamic component) and enthal-pic relaxation (irreversible, i.e., kinetic component) which overlap in the full DSC scan. (Reprinted with permission from Ref. 38.)... [Pg.602]

From the discussion presented of reactions in solids, it should be apparent that it is not practical in most cases to determine the concentration of some species during a kinetic study. In fact, it may be necessary to perform the analysis in a continuous way as the sample reacts with no separation necessary or even possible. Experimental methods that allow measurement of the progress of the reaction, especially as the temperature is increased, are particularly valuable. Two such techniques are thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). These techniques have become widely used to characterize solids, determine thermal stability, study phase changes, and so forth. Because they are so versatile in studies on solids, these techniques will be described briefly. [Pg.266]

Although there are other ways, one of the most convenient and rapid ways to measure AH is by differential scanning calorimetry. When the temperature is reached at which a phase transition occurs, heat is absorbed, so more heat must flow to the sample in order to keep the temperature equal to that of the reference. This produces a peak in the endothermic direction. If the transition is readily reversible, cooling the sample will result in heat being liberated as the sample is transformed into the original phase, and a peak in the exothermic direction will be observed. The area of the peak is proportional to the enthalpy change for transformation of the sample into the new phase. Before the sample is completely transformed into the new phase, the fraction transformed at a specific temperature can be determined by comparing the partial peak area up to that temperature to the total area. That fraction, a, determined as a function of temperature can be used as the variable for kinetic analysis of the transformation. [Pg.275]

Duswalt, A. A., "The Practice of Obtaining Kinetic Data by Differential Scanning Calorimetry," Thermochimica Acta, 8,56 (1974). [Pg.188]

Lepock, J.R., K.P. Ritchie, M.C. Kolios, A.M. Rodahl, K.A. Heinz, and J. Kruuv. 1992. Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation. Biochemistry 31 12706-12712. [Pg.375]

ISO 11357-3 1999 Plastics - Differential scanning calorimetry (DSC) - Part 3 Determination of temperature and enthalpy of melting and crystallization ISO 11357-7 2002 Plastics - Differential scanning calorimetry (DSC) - Part 7 Determination of crystallization kinetics... [Pg.176]

The two most popular methods of calculation of energy of activation will be presented in this chapter. First, the Kissinger method [165] is based on differential scanning calorimetry (DSC) analysis of decomposition or formation processes and related to these reactions endo- or exothermic peak positions are connected with heating rate. The second method is based on Arrhenius equation and determination of formation or decomposition rate from kinetic curves obtained at various temperatures. The critical point in this method is a selection of correct model to estimate the rate of reaction. [Pg.60]

Isothermal differential scanning calorimetry (DSC) measurements were carried out to investigate the curing kinetics [85]. Conversion vs time curves of DGEBPA-PACP systems prepared with 1 wt % of catalyst and without catalyst at identical curing temperature are overlaid in Fig. 31. [Pg.213]

A thermochemical method that simultaneously measures differences in heat flow into a test substance and a reference substance (whose thermochemical properties are already well characterized) as both are subjected to programmed temperature ramping of the otherwise thermally isolated sample holder. The advantage of differential scanning calorimetry is a kinetic technique that allows one to record differences in heat absorption directly rather than measuring the total heat evolved/... [Pg.195]

The temperature of maximum transformation rate is easily determined using either of two similar techniques called differential scanning calorimetry (DSC) or differential thermal analysis (DTA). These techniques are extremely useful in the kinetic study of both isothermal and nonisothermal phase transformations. [Pg.222]

Matusita, K., and S. Sakka, Kinetics study of the crystallization of glass by differential scanning calorimetry, Phys. Chem. Glasses, 20, 81 (1979). [Pg.280]

The glass transition temperatures, specific for each thermosetting resin, are used to characterize cure kinetics. They can be measured by many techniques, of which the widely used are Differential Scanning Calorimetry (DSC) and Torsional Braid Analysis (TBA)... [Pg.80]

Several experiments were devoted to the study of polymers. One was devoted to the study of spin-coating (121). A second uses light scattering to measure polymer sizes (122). There were several approaches to polymer kinetics (39, 123, 124, 125). Finally there was one study using differential scanning calorimetry to study polymer glasses (126). All of these experiments on modem materials can be found listed in Table VIII. [Pg.129]

A study of benzocyclobutene polymerization kinetics and thermodynamics by differential scanning calorimetry (DSC) methods has also been reported in the literature [1]. This study examined a series of benzocyclobutene monomers containing one or two benzocyclobutene groups per molecule, both with and without reactive unsaturation. The study provided a measurement of the thermodynamics of the reaction between two benzocyclobutene groups and compared it with the thermodynamics of the reaction of a benzocyclobutene with a reactive double bond (Diels-Alder reaction). Differential scanning calorimetry was chosen for this work since it allowed for the study of the reaction mixture throughout its entire polymerization and not just prior to or after its gel point. The monomers used in this study are shown in Table 3. The polymerization exotherms were analyzed by the method of Borchardt and Daniels to obtain the reaction order n, the Arrhenius activation energy Ea and the pre-exponential factor log Z. Tables 4 and 5 show the results of these measurements and related calculations. [Pg.11]

The kinetic results of the differential scanning calorimetry studies on the monomers in Table 3 are presented in Tables 4 and 5. The reaction order n with the exception of example 78a in Table 3 was approximately unity for all of the... [Pg.12]

The common methods of investigating the kinetics of explosive reactions are differential thermal analysis, thermogravimetric analysis and differential scanning calorimetry. [Pg.114]


See other pages where Kinetics differential scanning is mentioned: [Pg.339]    [Pg.49]    [Pg.2311]    [Pg.242]    [Pg.124]    [Pg.439]    [Pg.584]    [Pg.875]    [Pg.258]    [Pg.601]    [Pg.235]    [Pg.236]    [Pg.36]    [Pg.51]    [Pg.151]    [Pg.24]    [Pg.171]    [Pg.98]    [Pg.160]    [Pg.189]    [Pg.236]    [Pg.199]    [Pg.692]    [Pg.15]    [Pg.87]    [Pg.768]    [Pg.49]    [Pg.148]   


SEARCH



Kinetic differentiation

© 2024 chempedia.info