Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer a measure

It is possible to calculate the solubility parameters for polymers. A relation between the dispersion contribution to the surface energy of polymers (a measurable quantity) and the dispersion solubility parameter of polymers has been found, which is similar to a relation established for low-molecular weight substances (Table 6.4). [Pg.178]

In a permeation experiment a constant pressure gradient VP is maintained in a tube containing the polymer. A measurement of the velocity of the solvent Uj flowing through the polymer permits the determination of the permeability coefficient. This coefficient is defined by... [Pg.58]

Klein, J., and B. J. Briscoe, Difiusion of Large Molecules in Polymers, A Measuring Technique Based on Microdensitometry in the Infrared, Polymer, 17, 481 84,1976. [Pg.566]

Additives, whether hydrophobic solutes, other surfactants or polymers, tend to nucleate micelles at concentrations lower than in the absence of additive. Due to this nucleating effect of polymers on micellization there is often a measurable erne, usually called a critical aggregation concentration or cac, below the regular erne observed in the absence of added polymer. This cac is usually independent of polymer concentration. The size of these aggregates is usually smaller than that of free micelles, and this size tends to be small even in the presence of added salt (conditions where free micelles tend to grow in size). [Pg.2603]

The above discussion points out the difficulty associated with using the linear dimensions of a molecule as a measure of its size It is not the molecule alone that determines its dimensions, but also the shape in which it exists. Linear arrangements of the sort described above exist in polymer crystals, at least for some distance, although not over the full length of the chain. We shall take up the structure of polymer crystals in Chap. 4. In the solution and bulk states, many polymers exist in the coiled form we have also described. Still other structures are important, notably the helix, which we shall discuss in Sec. 1.11. The overall shape assumed by a polymer molecule is greatly affected... [Pg.6]

Figure 4.7 Various representations of the properties of a mixture of crystalline and amorphous polymer, (a) The monitored property is characteristic of the crystal and varies linearly with 0. (b) The monitored property is characteristic of the mixture and varies linearly with 0 between and P, . (c) X-ray intensity is measured with the sharp and broad peaks being P. and P., respectively. Figure 4.7 Various representations of the properties of a mixture of crystalline and amorphous polymer, (a) The monitored property is characteristic of the crystal and varies linearly with 0. (b) The monitored property is characteristic of the mixture and varies linearly with 0 between and P, . (c) X-ray intensity is measured with the sharp and broad peaks being P. and P., respectively.
We saw in Chap. 1 that the ratio M /M is widely used in polymer chemistry as a measure of the width of a molecular weight distribution. If the effect of chain ends is disregarded, this ratio is the same as the corresponding ratio of n values ... [Pg.297]

As with the rate of polymerization, we see from Eq. (6.37) that the kinetic chain length depends on the monomer and initiator concentrations and on the constants for the three different kinds of kinetic processes that constitute the mechanism. When the initial monomer and initiator concentrations are used, Eq. (6.37) describes the initial polymer formed. The initial degree of polymerization is a measurable quantity, so Eq. (6.37) provides a second functional relationship, different from Eq. (6.26), between experimentally available quantities-n, [M], and [1]-and theoretically important parameters—kp, k, and k. Note that the mode of termination which establishes the connection between u and hj, and the value of f are both accessible through end group characterization. Thus we have a second equation with three unknowns one more and the evaluation of the individual kinetic constants from experimental results will be feasible. [Pg.370]

In molecular weight determinations it is conventional to dissolve a measured mass of polymer m2 into a volumetric flask and dilute to the mark with an appropriate solvent. We shall use the symbol Cj to designate concentrations in mass per volume units. In practice, 100-ml volumetric flasks are often used, in which case C2 is expressed in grams per 100 ml or grams per deciliter. Even though these are not SI units, they are encountered often enough in the literature to be regarded as conventional solution units in polymer chemistry. [Pg.550]

Diffusion Theory. The diffusion theory of adhesion is mosdy appHed to polymers. It assumes mutual solubiUty of the adherend and adhesive to form a tme iaterphase. The solubiUty parameter, the square root of the cohesive eaergy deasity of a material, provides a measure of the iatermolecular iateractioas occurring within the material. ThermodyaamicaHy, solutioas of two materials are most likely to occur whea the solubiUty parameter of oae material is equal to that of the other. Thus, the observatioa that "like dissolves like." Ia other words, the adhesioa betweea two polymeric materials, oae an adherend, the other an adhesive, is maximized when the solubiUty parameters of the two are matched ie, the best practical adhesion is obtained when there is mutual solubiUty between adhesive and adherend. The diffusion theory is not appHcable to substantially dissimilar materials, such as polymers on metals, and is normally not appHcable to adhesion between substantially dissimilar polymers. [Pg.229]

The Ohio State University (OSU) calorimeter (12) differs from the Cone calorimeter ia that it is a tme adiabatic instmment which measures heat released dufing burning of polymers by measurement of the temperature of the exhaust gases. This test has been adopted by the Federal Aeronautics Administration (FAA) to test total and peak heat release of materials used ia the iateriors of commercial aircraft. The other principal heat release test ia use is the Factory Mutual flammabiHty apparatus (13,14). Unlike the Cone or OSU calorimeters this test allows the measurement of flame spread as weU as heat release and smoke. A unique feature is that it uses oxygen concentrations higher than ambient to simulate back radiation from the flames of a large-scale fire. [Pg.466]

TetrabromobisphenoIA. Tetrabromobisphenol A [79-94-7] (TBBPA) is the largest volume bromiaated flame retardant. TBBPA is prepared by bromination of bisphenol A under a variety of conditions. When the bromination is carried out ia methanol, methyl bromide [74-80-9] is produced as a coproduct (37). If hydrogen peroxide is used to oxidize the hydrogen bromide [10035-10-6] HBr, produced back to bromine, methyl bromide is not coproduced (38). TBBPA is used both as an additive and as a reactive flame retardant. It is used as an additive primarily ia ABS systems, la ABS, TBBPA is probably the largest volume flame retardant used, and because of its relatively low cost is the most cost-effective flame retardant. In ABS it provides high flow and good impact properties. These benefits come at the expense of distortion temperature under load (DTUL) (39). DTUL is a measure of the use temperature of a polymer. TBBPA is more uv stable than decabrom and uv stable ABS resias based oa TBBPA are produced commercially. [Pg.468]

Although microporous membranes are a topic of research interest, all current commercial gas separations are based on the fourth type of mechanism shown in Figure 36, namely diffusion through dense polymer films. Gas transport through dense polymer membranes is governed by equation 8 where is the flux of component /,andare the partial pressure of the component i on either side of the membrane, /is the membrane thickness, and is a constant called the membrane permeability, which is a measure of the membrane s ability to permeate gas. The ability of a membrane to separate two gases, i and is the ratio of their permeabilities,a, called the membrane selectivity (eq. 9). [Pg.83]

It may be shown that M > M. The two are equal only for a monodisperse material, in which all molecules are the same sise. The ratio MI /MI is known as the polydispersity index and is a measure of the breadth of the molecular weight distribution. Values range from about 1.02 for carefully fractionated samples or certain polymers produced by anionic polymerization, to 20 or more for some commercial polyethylenes. [Pg.431]

The solubiHty parameter of a polymer is a measure of its iatermolecular forces, and provides an estimate of the compatibiHty of a polymer with another polymer or a polymer with a solvent. Two components are compatible if they have similar solubiHty parameters. The solubiHty parameter can be determined by various methods, such as intrinsic viscosity and swelling measurements. The solubiHty parameters of various polymers and solvents are tabulated ia refereace handbooks (146,147). It also can be estimated from the stmcture of the polymer (148). [Pg.233]

Moonej Viscosity. This is a measurement of the viscosity of the polymer that is commonly used ia the mbber iadustry. Mooney viscosity values typically range from 25 to 100. Mooney viscosity generally relates to polymer molecular weight, with the lower Mooney viscosity polymers providing improved flow and processiag characteristics and the higher Mooney NBRs providing improved physical properties. [Pg.522]

Dielectric Constant The dielectric constant of material represents its ability to reduce the electric force between two charges separated in space. This propei ty is useful in process control for polymers, ceramic materials, and semiconduc tors. Dielectric constants are measured with respect to vacuum (1.0) typical values range from 2 (benzene) to 33 (methanol) to 80 (water). TEe value for water is higher than for most plastics. A measuring cell is made of glass or some other insulating material and is usually doughnut-shaped, with the cylinders coated with metal, which constitute the plates of the capacitor. [Pg.764]


See other pages where Polymer a measure is mentioned: [Pg.21]    [Pg.74]    [Pg.5691]    [Pg.5844]    [Pg.21]    [Pg.74]    [Pg.5691]    [Pg.5844]    [Pg.2903]    [Pg.10]    [Pg.61]    [Pg.365]    [Pg.566]    [Pg.56]    [Pg.122]    [Pg.431]    [Pg.134]    [Pg.234]    [Pg.400]    [Pg.548]    [Pg.373]    [Pg.141]    [Pg.84]    [Pg.372]    [Pg.390]    [Pg.403]    [Pg.302]    [Pg.497]    [Pg.123]    [Pg.127]    [Pg.144]    [Pg.281]    [Pg.298]    [Pg.353]    [Pg.177]    [Pg.195]    [Pg.508]    [Pg.272]   
See also in sourсe #XX -- [ Pg.239 , Pg.240 , Pg.240 , Pg.242 , Pg.243 ]




SEARCH



Polymer measurement

© 2024 chempedia.info