Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic theory quantum mechanical

Anyone who has sought in chemistry a road to the understanding of everyday things will probably have been impressed by the apparent gulf separating the substances with which simple chemical experiments are done in the laboratory and the materials of which the ordinary world seems largely to be made. Trees, rocks, aUoys, and many other common objects and substances are of evident complexity, and this is not aU even the simpler chemical bodies seem to be extraordinarily diverse, and the problem of their classification is a formidable one. Among the major questions of physical chemistry is that of the connexion between the electrical theory of matter, the kinetic theory, quantum mechanical and statistical principles, and the forms assumed by the various systems accessible to normal experience. [Pg.281]

In addition to experiments, a range of theoretical techniques are available to calculate thermochemical information and reaction rates for homogeneous gas-phase reactions. These techniques include ab initio electronic structure calculations and semi-empirical approximations, transition state theory, RRKM theory, quantum mechanical reactive scattering, and the classical trajectory approach. Although still computationally intensive, such techniques have proved themselves useful in calculating gas-phase reaction energies, pathways, and rates. Some of the same approaches have been applied to surface kinetics and thermochemistry but with necessarily much less rigor. [Pg.476]

Atomic Physics Atomic Spectrometry Chemical Kinetics, Experimentation Nuclear Magnetic Resonance Perturbation Theory Quantum Mechanics... [Pg.133]

The theory of chemical reactions has many facets including elaborate quantum mechanical scattering approaches that treat the kinetic energy of atoms by proper wave mechanical methods. These approaches to chemical reaction theory go far beyond the capabilities of a product like HyperChem as many of the ideas are yet to have wide-spread practical implementations. [Pg.327]

Absorption and emission spectroscopies provide experimental values for the quantized energies of atomic electrons. The theory of quantum mechanics provides a mathematical explanation that links quantized energies to the wave characteristics of electrons. These wave properties of atomic electrons are described by the Schrddinger equation, a complicated mathematical equation with numerous terms describing the kinetic and potential energies of the atom. [Pg.468]

Kinetics on the level of individual molecules is often referred to as reaction dynamics. Subtle details are taken into account, such as the effect of the orientation of molecules in a collision that may result in a reaction, and the distribution of energy over a molecule s various degrees of freedom. This is the fundamental level of study needed if we want to link reactivity to quantum mechanics, which is really what rules the game at this fundamental level. This is the domain of molecular beam experiments, laser spectroscopy, ah initio theoretical chemistry and transition state theory. It is at this level that we can learn what determines whether a chemical reaction is feasible. [Pg.24]

According to the correspondence principle as stated by N. Bohr (1928), the average behavior of a well-defined wave packet should agree with the classical-mechanical laws of motion for the particle that it represents. Thus, the expectation values of dynamical variables such as position, velocity, momentum, kinetic energy, potential energy, and force as calculated in quantum mechanics should obey the same relationships that the dynamical variables obey in classical theory. This feature of wave mechanics is illustrated by the derivation of two relationships known as Ehrenfest s theorems. [Pg.43]

Numerous quantum mechanic calculations have been carried out to better understand the bonding of nitrogen oxide on transition metal surfaces. For instance, the group of Sautet et al have reported a comparative density-functional theory (DFT) study of the chemisorption and dissociation of NO molecules on the close-packed (111), the more open (100), and the stepped (511) surfaces of palladium and rhodium to estimate both energetics and kinetics of the reaction pathways [75], The structure sensitivity of the adsorption was found to correlate well with catalytic activity, as estimated from the calculated dissociation rate constants at 300 K. The latter were found to agree with numerous experimental observations, with (111) facets rather inactive towards NO dissociation and stepped surfaces far more active, and to follow the sequence Rh(100) > terraces in Rh(511) > steps in Rh(511) > steps in Pd(511) > Rh(lll) > Pd(100) > terraces in Pd (511) > Pd (111). The effect of the steps on activity was found to be clearly favorable on the Pd(511) surface but unfavorable on the Rh(511) surface, perhaps explaining the difference in activity between the two metals. The influence of... [Pg.85]

The development of theoretical chemistry ceased at about 1930. The last significant contributions came from the first of the modern theoretical physicists, who have long since lost interest in the subject. It is not uncommon today, to hear prominent chemists explain how chemistry is an experimental science, adequately practiced without any need of quantum mechanics or the theories of relativity. Chemical thermodynamics is routinely rehashed in the terminology and concepts of the late nineteenth century. The formulation of chemical reaction and kinetic theories take scant account of statistical mechanics and non-equilibrium thermodynamics. Theories of molecular structure are entirely classical and molecular cohesion is commonly analyzed in terms of isolated bonds. Holistic effects and emergent properties that could... [Pg.521]

In this section, using the representation theory introduced before, we analyse the structure of statistical mechanics and kinetic theory for bosons starting from Eq. (44). We consider that Eq. (44) describes the evolution of an ensemble of quantum particles specified through the density operator p such that the entropy is given by(A.E. Santana et.al., 1999 A.E. Santana et.al., 2000)... [Pg.208]

Abstract Some of the successes and several of the inadequacies of transition state theory (TST) as applied to kinetic isotope effects are briefly discussed. Corrections for quantum mechanical tunneling are introduced. The bulk of the chapter, however, deals with the more sophisticated approach known as variational transition state theory (VTST). [Pg.181]

Molecular modeling treatments of electron transfer kinetics for reactions involving bond breaking were developed much earlier than the continuum theories originated by Weiss in 1951. Gurney in 193l published a landmark paper (the foundation of quantum electrochemistry) on a molecular and quantum mechanical model of proton and electron transfer... [Pg.94]

MSN.85. I. Prigogine and A. P. Grecos, Kinetic theory and ergodic properties in quantum mechanics, in 75 Jahre Quantenmechanik, Akademie-Verlag, Berlin, 1977, pp. 57-68. [Pg.57]

The theory fails to explain the molar specific heat of metals since the free electrons do not absorb heat as a gas obeying the classical kinetic gas laws. This problem was solved when Sommerfeld (1) applied quantum mechanics to the electron system. [Pg.27]

Consequently, while I jump into continuous reactors in Chapter 3, I have tried to cover essentially aU of conventional chemical kinetics in this book. I have tried to include aU the kinetics material in any of the chemical kinetics texts designed for undergraduates, but these are placed within and at the end of chapters throughout the book. The descriptions of reactions and kinetics in Chapter 2 do not assume any previous exposure to chemical kinetics. The simplification of complex reactions (pseudosteady-state and equilibrium step approximations) are covered in Chapter 4, as are theories of unimolecular and bimolecular reactions. I mention the need for statistical mechanics and quantum mechanics in interpreting reaction rates but do not go into state-to-state dynamics of reactions. The kinetics with catalysts (Chapter 7), solids (Chapter 9), combustion (Chapter 10), polymerization (Chapter 11), and reactions between phases (Chapter 12) are all given sufficient treatment that their rate expressions can be justified and used in the appropriate reactor mass balances. [Pg.554]


See other pages where Kinetic theory quantum mechanical is mentioned: [Pg.423]    [Pg.4]    [Pg.2115]    [Pg.400]    [Pg.2]    [Pg.158]    [Pg.277]    [Pg.515]    [Pg.477]    [Pg.944]    [Pg.390]    [Pg.3]    [Pg.215]    [Pg.90]    [Pg.42]    [Pg.175]    [Pg.506]    [Pg.359]    [Pg.481]    [Pg.1083]    [Pg.72]    [Pg.198]    [Pg.217]    [Pg.200]    [Pg.339]    [Pg.386]    [Pg.53]    [Pg.60]    [Pg.364]    [Pg.154]    [Pg.101]    [Pg.356]    [Pg.356]    [Pg.53]   
See also in sourсe #XX -- [ Pg.30 ]




SEARCH



Kinetic mechanism

Kinetic theory 492 kinetics

Kinetics mechanisms

Kinetics theory

Mechanical theory

Mechanics Theory

Mechanism theory

Quantum mechanical theory

Quantum mechanics theory

© 2024 chempedia.info