Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum perturbation theory

Qnn and Q2nn are the expectation values of the bond length displacement and its square, (r - re) and (r — re)2, in the nth vibrational level of the isolated molecule. These can be easily calculated using quantum perturbation theory. [Pg.175]

The basic theoretical models to describe the interaction of ionized particles with matter were developed early in the 20th century by Bohr [1,2], Bethe [3] and Bloch [4] (BBB). These models provide the general framework to almost any consideration on the energy loss of swift particles in matter. The first two of these models are based on widely different assumptions, the Bohr description is fully classical, representing the atomic electrons by classical oscillators, while the Bethe model is based on quantum perturbation theory (first-order Born approximation). [Pg.48]

In the classical picture, the short range interaction is described by the classical Rutherford scattering theory, which is parameterized in terms of b being the impact parameter and b = Ze /mv the classical collision radius. Instead, in the quantum perturbation theory, the short-range behavior is related to high momentum transfers. In the Bethe and Lindhard theories... [Pg.52]

Many science texts refer to a 1928 paper by W. Pauli [W. Pauli, Festschrift zum 60. Geburtstage A. Sommerfelds (Hirzel, Leipzig, 1928) p. 30] as the first derivation of this type of Kinetic equation. Pauh has used this approach to construct a model for the time evolution of a many-sate quantum system, using transition rates obtained from quantum perturbation theory. [Pg.274]

A. Cammarata, in Molecular Orbital Studies m Chemical Pharmacology. L. B. Kier, Ed., Academie-Verlag, Berlin, 1970. Quantum Perturbation Theory and Linear Free Energy Relationships in the Study of Drug Action. [Pg.458]

This is the entire formal structure of classical statistical mechanical perturbation theory. The reader will note how much simpler it is than quantum perturbation theory. But the devil lies in the details. How does one choose the unperturbed potential, y How does one evaluate the first-order perturbation It is quite difficult to compute the quantities in Equation P5 from first principles. Most progress has been made by some clever application of the law of corresponding states. It is not the aim of this chapter to follow this road to solution theory any further. [Pg.372]

The purpose of this chapter is to provide an introduction to tlie basic framework of quantum mechanics, with an emphasis on aspects that are most relevant for the study of atoms and molecules. After siumnarizing the basic principles of the subject that represent required knowledge for all students of physical chemistry, the independent-particle approximation so important in molecular quantum mechanics is introduced. A significant effort is made to describe this approach in detail and to coimnunicate how it is used as a foundation for qualitative understanding and as a basis for more accurate treatments. Following this, the basic teclmiques used in accurate calculations that go beyond the independent-particle picture (variational method and perturbation theory) are described, with some attention given to how they are actually used in practical calculations. [Pg.4]

In the quantum mechanics of atoms and molecules, both perturbation theory and the variational principle are widely used. For some problems, one of the two classes of approach is clearly best suited to the task, and is thus an established choice. Flowever, in many others, the situation is less clear cut, and calculations can be done with either of the methods or a combination of both. [Pg.51]

There has been a great deal of work [62, 63] investigating how one can use perturbation theory to obtain an effective Hamiltonian like tlie spectroscopic Hamiltonian, starting from a given PES. It is found that one can readily obtain an effective Hamiltonian in temis of nomial mode quantum numbers and coupling. [Pg.72]

If the long-range mteraction between a pair of molecules is treated by quantum mechanical perturbation theory, then the electrostatic interactions considered in section Al.5.2.3 arise in first order, whereas induction and dispersion effects appear in second order. The multipole expansion of the induction energy in its fill generality [7, 28] is quite complex. Here we consider only explicit expressions for individual temis in the... [Pg.190]

Many groups are now trying to fit frequency shift curves in order to understand the imaging mechanism, calculate the minimum tip-sample separation and obtain some chemical sensitivity (quantitative infonuation on the tip-sample interaction). The most conunon methods appear to be perturbation theory for considering the lever dynamics [103], and quantum mechanical simulations to characterize the tip-surface interactions [104]. Results indicate that the... [Pg.1697]

Krishnan R and Pople J A 1978 Approximate fourth-order perturbation theory of the electron correlation energy Int. J. Quantum Chem. 14 91-100... [Pg.2197]

Bartlett R J and Purvis G D 1978 Many-body perturbation theory coupled-pair many-electron theory and the importance of quadruple excitations for the correlation problem int. J. Quantum Chem. 14 561-81... [Pg.2198]

First-principles models of solid surfaces and adsorption and reaction of atoms and molecules on those surfaces range from ab initio quantum chemistry (HF configuration interaction (Cl), perturbation theory (PT), etc for details see chapter B3.1 ) on small, finite clusters of atoms to HF or DFT on two-dimensionally infinite slabs. In between these... [Pg.2221]

The importance of FMO theory hes in the fact that good results may be obtained even if the frontier molecular orbitals are calculated by rather simple, approximate quantum mechanical methods such as perturbation theory. Even simple additivity schemes have been developed for estimating the energies and the orbital coefficients of frontier molecular orbitals [6]. [Pg.179]

The amount of computation for MP2 is determined by the partial tran si ormatioii of the two-electron integrals, what can be done in a time proportionally to m (m is the u umber of basis functions), which IS comparable to computations involved m one step of(iID (doubly-excitcil eon figuration interaction) calculation. fo save some computer time and space, the core orbitals are frequently omitted from MP calculations. For more details on perturbation theory please see A. S/abo and N. Ostlund, Modem Quantum (. hern-isir > Macmillan, Xew York, 198.5. [Pg.238]

The Seetion entitled The BasiC ToolS Of Quantum Mechanics treats the fundamental postulates of quantum meehanies and several applieations to exaetly soluble model problems. These problems inelude the eonventional partiele-in-a-box (in one and more dimensions), rigid-rotor, harmonie oseillator, and one-eleetron hydrogenie atomie orbitals. The eoneept of the Bom-Oppenheimer separation of eleetronie and vibration-rotation motions is introdueed here. Moreover, the vibrational and rotational energies, states, and wavefunetions of diatomie, linear polyatomie and non-linear polyatomie moleeules are diseussed here at an introduetory level. This seetion also introduees the variational method and perturbation theory as tools that are used to deal with problems that ean not be solved exaetly. [Pg.2]

In applying quantum mechanics to real chemical problems, one is usually faced with a Schrodinger differential equation for which, to date, no one has found an analytical solution. This is equally true for electronic and nuclear-motion problems. It has therefore proven essential to develop and efficiently implement mathematical methods which can provide approximate solutions to such eigenvalue equations. Two methods are widely used in this context- the variational method and perturbation theory. These tools, whose use permeates virtually all areas of theoretical chemistry, are briefly outlined here, and the details of perturbation theory are amplified in Appendix D. [Pg.57]

This Introductory Section was intended to provide the reader with an overview of the structure of quantum mechanics and to illustrate its application to several exactly solvable model problems. The model problems analyzed play especially important roles in chemistry because they form the basis upon which more sophisticated descriptions of the electronic structure and rotational-vibrational motions of molecules are built. The variational method and perturbation theory constitute the tools needed to make use of solutions of... [Pg.73]

The amplitude for the so-ealled referenee CSF used in the SCF proeess is taken as unity and the other CSFs amplitudes are determined, relative to this one, by Rayleigh-Sehrodinger perturbation theory using the full N-eleetron Hamiltonian minus the sum of Foek operators H-H as the perturbation. The Slater-Condon rules are used for evaluating matrix elements of (H-H ) among these CSFs. The essential features of the MPPT/MBPT approaeh are deseribed in the following artieles J. A. Pople, R. Krishnan, H. B. Sehlegel, and J. S. Binkley, Int. J. Quantum Chem. 14, 545 (1978) R. J. Bartlett and D. M. Silver, J. Chem. Phys. 3258 (1975) R. Krishnan and J. A. Pople, Int. J. Quantum Chem. [Pg.484]

There is another manner in whieh perturbation theory is used in quantum ehemistry that does not involve an externally applied perturbation. Quite often one is faeed with solving a Sehrodinger equation to whieh no exaet solution has been (yet) or ean be found. In sueh eases, one often develops a model Sehrodinger equation whieh in some sense is designed to represent the system whose full Sehrodinger equation ean not be solved. The... [Pg.575]

The idea in perturbation methods is that the problem at hand only differs slightly from a problem which has already been solved (exactly or approximately). The solution to the given problem should therefore in some sense be close to the solution of the already known system. This is described mathematically by defining a Hamilton operator which consists of two part, a reference (Hq) and a perturbation (H )- The premise of perturbation methods is that the H operator in some sense is small compared to Hq. In quantum mechanics, perturbational methods can be used for adding corrections to solutions which employ an independent particle approximation, and the theoretical framework is then called Many-Body Perturbation Theory (MBPT). [Pg.123]

There are several different ways in which quantum mechanics has been applied to the problem of relating the barrier to the frequency separation of the spectroscopic doublets. These are all approximation procedures and each is especially suitable under an appropriate set of circumstances. For example one may use perturbation theory, treating either the coupling of internal and external angular momenta, the molecular asymmetry, or the potential barrier as perturbations. Some of the different treatments have regions of overlap in which they give equivalent results choice is then usually made on the basis of convenience or familiarity. Extensive numerical tabless have been prepared which simplify considerably the calculations. [Pg.380]

These rules follow directly from the quantum-mechanical theory of perturbations and the resolution of the secular equations for the orbital interaction problem. The (small) interaction between orbitals of significantly different energ is the familiar second order type interaction, where the interaction energy is small relative to the difference between EA and EB. The (large) interaction between orbitals of same energy is the familiar first order type interaction between degenerate or nearly degenerate levels. [Pg.11]

One aspect of the mathematical treatment of the quantum mechanical theory is of particular interest. The wavefunction of the perturbed molecule (i.e. the molecule after the radiation is switched on ) involves a summation over all the stationary states of the unperturbed molecule (i.e. the molecule before the radiation is switched on ). The expression for intensity of the line arising from the transition k —> n involves a product of transition moments, MkrMrn, where r is any one of the stationary states and is often referred to as the third common level in the scattering act. [Pg.297]

As can be seen, the interference in each pair of lines does not disappear even in the lower order of perturbation theory when off-diagonal elements of the S-matrix are linear in V. In the doublet, which represents the absorption spectrum, pi is the quantum equivalent of Gordon s classical... [Pg.131]

At higher pressures only Raman spectroscopy data are available. Because the rotational structure is smoothed, either quantum theory or classical theory may be used. At a mixture pressure above 10 atm the spectra of CO and N2 obtained in [230] were well described classically (Fig. 5.11). For the lowest densities (10-15 amagat) the band contours have a characteristic asymmetric shape. The asymmetry disappears at higher pressures when the contour is sufficiently narrowed. The decrease of width with 1/tj measured in [230] by NMR is closer to the strong collision model in the case of CO and to the weak collision model in the case of N2. This conclusion was confirmed in [215] by presenting the results in universal coordinates of Fig. 5.12. It is also seen that both systems are still far away from the fast modulation (perturbation theory) limit where the upper and lower borders established by alternative models merge into a universal curve independent of collision strength. [Pg.182]


See other pages where Quantum perturbation theory is mentioned: [Pg.117]    [Pg.207]    [Pg.117]    [Pg.207]    [Pg.35]    [Pg.51]    [Pg.66]    [Pg.893]    [Pg.1500]    [Pg.1502]    [Pg.2334]    [Pg.253]    [Pg.535]    [Pg.136]    [Pg.59]    [Pg.233]    [Pg.575]    [Pg.219]    [Pg.5]    [Pg.63]    [Pg.2]    [Pg.274]   
See also in sourсe #XX -- [ Pg.407 , Pg.408 , Pg.409 , Pg.410 , Pg.411 ]




SEARCH



Moller-Plesset perturbation theory quantum chemistry

Perturbation theory in quantum mechanics

Perturbation theory system quantum dynamics

Quantum Electrodynamics and Many-body Perturbation Theory

Quantum chemistry perturbation molecular orbital theory

Quantum electrodynamics perturbation theory

Quantum mechanical perturbation theory

Quantum mechanics perturbation theory

© 2024 chempedia.info