Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic equations dielectric relaxation

It has to be mentioned that such equivalent circuits as circuits (Cl) or (C2) above, which can represent the kinetic behavior of electrode reactions in terms of the electrical response to a modulation or discontinuity of potential or current, do not necessarily uniquely represent this behavior that is other equivalent circuits with different arrangements and different values of the components can also represent the frequency-response behavior, especially for the cases of more complex multistep reactions, for example, as represented above in circuit (C2). In such cases, it is preferable to make a mathematical or numerical analysis of the frequency response, based on a supposed mechanism of the reaction and its kinetic equations. This was the basis of the important paper of Armstrong and Henderson (108) and later developments by Bai and Conway (113), and by McDonald (114) and MacDonald (115). In these cases, the real (Z ) and imaginary (Z") components of the overall impedance vector (Z) can be evaluated as a function of frequency and are often plotted against one another in a so-called complex-plane or Argand diagram (110). The procedures follow closely those developed earlier for the representation of dielectric relaxation and dielectric loss in dielectric materials and solutions [e.g., the Cole and Cole plots (116) ]. [Pg.29]

We shall now almost exclusively concentrate on the fractal time random walk excluding inertial effects and the discrete orientation model of dielectric relaxation. We shall demonstrate how in the diffusion limit this walk will yield a fractional generalization of the Debye-Frohlich model. Just as in the conventional Debye relaxation, a fractional generalization of the Debye-Frohlich model may be derived from a number of very different models of the relaxation process (compare the approach of Refs. 22, 23, 28 and 34—36). The advantage of using an approach based on a kinetic equation such as the fractional Fokker-Planck equation (FFPE) however is that such a method may easily be extended to include the effects of the inertia of the dipoles, external potentials, and so on. Moreover, the FFPE (by use of a theorem of operational calculus generalized to fractional exponents and continued fraction methods) clearly indicates how many existing results of the classical theory of the Brownian motion may be extended to include fractional dynamics. [Pg.299]

Electric field methods for the study of fast kinetics encompass a number of diverse experimental techniques. If the applied field is small the techniques are usually considered under the heading of dielectric relaxation techniques. These will be discussed elsewhere in this volume. At high field strengths there is an increased dissociation of weak electrolytes, the so called second Wien effect. Quantitatively this effect is given by the equation of Onsager (1)... [Pg.95]

Kinetic information on the molecular conformational change can be extracted from dynamic mechanical studies, as described in Chapter 10, from the closely related acoustic relaxation experiments described in Chapter 11, and from dielectric relaxation covered in Chapter 12. In all of these, the observation of a transition in the frequency dependence of the property under study yields a relaxation time for the molecular process. This in turn transforms into the kinetics of the movement. Again, the activation energy associated with the conformational change is obtained from the effect of temperature on the relaxation time, using either the Arrhenius equation or a related analysis. [Pg.202]

The fractional free volume f, which is the ratio of the free volume to the overall volume, occupies a central position in tr5nng to understand the molecular origins of the temperature dependence of viscoelastic response. The main assumption of the free-volume theory is that the fractional free volume assumes some universal value at the glass transition temperature. The Williams-Landel-Ferry (WLF) equation for the thermal dependence of the viscosity tj of polymer melts is an outgrowth of the kinetic theories based on the free volume and Eyring rate theory (35). It describes the temperature dependence of relaxation times in polymers and other glass-forming liquids above Tg (33-35). The ratio of a mechanical or dielectric relaxation time, Tm or ra, at a temperature T to its value at an arbitrary reference temperature To can be represented by a simple empirical, nearly universal function. [Pg.1243]

In order to quantify diffiisional effects on curing reactions, kinetic models are proposed in the literature [7,54,88,95,99,127-133]. Special techniques, such as dielectric permittivity, dielectric loss factor, ionic conductivity, and dipole relaxation time, are employed because spectroscopic techniques (e.g., FT i.r. or n.m.r.) are ineffective because of the insolubility of the reaction mixture at high conversions. A simple model, Equation 2.23, is presented by Chem and Poehlein [3], where a diffiisional factor,//, is introduced in the phenomenological equation, Equation 2.1. [Pg.84]

The models (26) and (27), used to explain the kinetics of chemical reaction rates, were also found to be very useful for other applications. Taking into account the relationship x 1 ik, these equations can describe the temperature dependence of the relaxation time x for dielectric or mechanical relaxations provided by the transition between the initial and final states separated by an energy barrier. [Pg.13]

All the examples described above show that confinement in different cases may be responsible for nonmonotonic relaxation kinetics and can lead to a saddle-like dependence of relaxation time versus temperature. However, this is not the only possible reason for nonmonotonic kinetics. For instance, work [258] devoted to the dielectric study of an antiferromagnetic crystal discusses a model based on the idea of screening particles. Starting from the Arrhenius equation and implying that the Arrhenius activation energy has a linear dependence on the concentration of screening charge carriers, the authors of Ref. 258 also obtained an expression that can lead to nonmonotonic relaxation kinetics under certain conditions. However, the experimental data discussed in that work does not show clear saddle-like behavior of relaxation time temperature dependence. The authors of Ref. 258 do not even discuss such a possibility. [Pg.102]


See other pages where Kinetic equations dielectric relaxation is mentioned: [Pg.300]    [Pg.340]    [Pg.587]    [Pg.324]    [Pg.364]    [Pg.745]    [Pg.1032]    [Pg.854]    [Pg.869]    [Pg.340]    [Pg.1241]    [Pg.210]    [Pg.28]    [Pg.5]    [Pg.644]    [Pg.420]    [Pg.868]    [Pg.872]   
See also in sourсe #XX -- [ Pg.12 , Pg.15 ]

See also in sourсe #XX -- [ Pg.12 , Pg.15 ]




SEARCH



Dielectric relaxation

Kinetic equations

Kinetic relaxation

Kinetics equations

Relaxation equation

Relaxation kinetics

Relaxational kinetic equations

© 2024 chempedia.info