Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinase linkers

Molecular insight into the protein conformation states of Src kinase has been revealed in a series of x-ray crystal structures of the Src SH3-SH2-kinase domain that depict Src in its inactive conformation [7]. This form maintains a closed structure, in which the tyrosine-phosphorylated (Tyr527) C-terminal tail is bound to the SH2 domain (Fig. 2). The x-ray data also reveal binding of the SH3 domain to the SH2-kinase linker [adopts a polyproline type II (PP II) helical conformation], providing additional intramolecular interactions to stabilize the inactive conformation. Collectively, these interactions cause structural changes within the catalytic domain of the protein to compromise access of substrates to the catalytic site and its associated activity. Significantly, these x-ray structures provided the first direct evidence that the SH2 domain plays a key role in the self-regulation of Src. [Pg.36]

Figure 2 Depiction of the active ( open ) and inactive ( closed ) conformations of Src kinase based on the analysis of x-ray structures of c-Src tyrosine kinase crystallized in its inactive state [7]. The stabilization of the inactive conformation is influenced by multiple events including intramolecular binding of the tyrosine-phosphorylated C-terminus tail to the SH2 domain as well as interactions between the SH3 domain and the SH2-kinase linker. CT, C-terminal NT, N-terminal. [Pg.37]

Singh, M., Berger, B., Kim, P. S., Berger, J. M., and Cochran, A. G. (1998). Computational learning reveals coiled-coil like motifs in histidine kinase linker domains. Proc. Natl. Acad. Sci. 95, 2738-2743. [Pg.77]

Fig. 2.2 (A) Traxler/Bower Kinase inhibitor pharmacophore. The perspective given is a top down view from the N-terminal to C-ter-minal domain in which the plane of the adenine ring matches that of the page. A short segment of the kinase linker region is shown which includes the three hydrogen bonding residues (minus side chains) plus the gatekeeper residue. In this orientation the top of... Fig. 2.2 (A) Traxler/Bower Kinase inhibitor pharmacophore. The perspective given is a top down view from the N-terminal to C-ter-minal domain in which the plane of the adenine ring matches that of the page. A short segment of the kinase linker region is shown which includes the three hydrogen bonding residues (minus side chains) plus the gatekeeper residue. In this orientation the top of...
West KA, Zhang H, Brown MC, Nikolopoulos SN, Riedy MC, Horwitz AF, Turner CE. The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). J. Cell. Biol. 2001 154 161-176. [Pg.781]

The catalytic subunit of cAPK contains two domains connected by a peptide linker. ATP binds in a deep cleft between the two domains. Presently, crystal structures showed cAPK in three different conformations, (1) in a closed conformation in the ternary complex with ATP or other tight-binding ligands and a peptide inhibitor PKI(5-24), (2) in an intermediate conformation in the binary complex with adenosine, and (3) in an open conformation in the binary complex of mammalian cAPK with PKI(5-24). Fig.l shows a superposition of the three protein kinase configurations to visualize the type of conformational movement. [Pg.68]

Figure 13.30 Ribbon diagram of the structure of Src tyrosine kinase. The structure is divided in three units starting from the N-terminus an SH3 domain (green), an SH2 domain (blue), and a tyrosine kinase (orange) that is divided into two domains and has the same fold as the cyclin dependent kinase described in Chapter 6 (see Figure 6.16a). The linker region (red) between SH2 and the kinase is bound to SH3 in a polyproline helical conformation. A tyrosine residue in the carboxy tail of the kinase is phosphorylated and bound to SH2 in its phosphotyrosine-binding site. A disordered part of the activation segment in the kinase is dashed. (Adapted from W. Xu et al.. Nature 385 595-602, 1997.)... Figure 13.30 Ribbon diagram of the structure of Src tyrosine kinase. The structure is divided in three units starting from the N-terminus an SH3 domain (green), an SH2 domain (blue), and a tyrosine kinase (orange) that is divided into two domains and has the same fold as the cyclin dependent kinase described in Chapter 6 (see Figure 6.16a). The linker region (red) between SH2 and the kinase is bound to SH3 in a polyproline helical conformation. A tyrosine residue in the carboxy tail of the kinase is phosphorylated and bound to SH2 in its phosphotyrosine-binding site. A disordered part of the activation segment in the kinase is dashed. (Adapted from W. Xu et al.. Nature 385 595-602, 1997.)...
Figure 13.31 Space-filling diagram of Src tyrosine kinase in the same view as Figure 13.30. The SH2 domain makes only a few contacts with the rest of the molecule except for the tail region of the kinase. The SH3 domain contacts the N-domain of the kinase in addition to the linker region. There are extensive contacts between the N- and C-domains of the kinase. (Adapted from W. Xu et al., Nature 385 596-602, 1997.)... Figure 13.31 Space-filling diagram of Src tyrosine kinase in the same view as Figure 13.30. The SH2 domain makes only a few contacts with the rest of the molecule except for the tail region of the kinase. The SH3 domain contacts the N-domain of the kinase in addition to the linker region. There are extensive contacts between the N- and C-domains of the kinase. (Adapted from W. Xu et al., Nature 385 596-602, 1997.)...
Figure 13.32 Regulation of the catalytic activity of members of the Src family of tyrosine kinases, (a) The inactive form based on structure determinations. Helix aC is in a position and orientation where the catalytically important Glu residue is facing away from the active site. The activation segment has a conformation that through steric contacts blocks the catalytically competent positioning of helix aC. (b) A hypothetical active conformation based on comparisons with the active forms of other similar protein kinases. The linker region is released from SH3, and the activation segment changes its structure to allow helix aC to move and bring the Glu residue into the active site in contact with an important Lys residue. Figure 13.32 Regulation of the catalytic activity of members of the Src family of tyrosine kinases, (a) The inactive form based on structure determinations. Helix aC is in a position and orientation where the catalytically important Glu residue is facing away from the active site. The activation segment has a conformation that through steric contacts blocks the catalytically competent positioning of helix aC. (b) A hypothetical active conformation based on comparisons with the active forms of other similar protein kinases. The linker region is released from SH3, and the activation segment changes its structure to allow helix aC to move and bring the Glu residue into the active site in contact with an important Lys residue.
Src tyrosine kinase contains both an SH2 and an SH3 domain linked to a tyrosine kinase unit with a structure similar to other protein kinases. The phosphorylated form of the kinase is inactivated by binding of a phosphoty-rosine in the C-terminal tail to its own SH2 domain. In addition the linker region between the SH2 domain and the kinase is bound in a polyproline II conformation to the SH3 domain. These interactions lock regions of the active site into a nonproductive conformation. Dephosphorylation or mutation of the C-terminal tyrosine abolishes this autoinactivation. [Pg.280]

Kinase Domain VII Linker L12 Domain VIII (Catalytic Loop) ... [Pg.245]

The catalytic pi 10 subunit has four isoforms, all of which contain a kinase domain and a Ras interaction site. In addition, the a, (3, and y isoforms possess an interaction site for the p85 subunit. The class I enzymes can be further subdivided class IA enzymes interact through their SH2 domains with phosphotyrosines present on either protein tyrosine kinases or to docking proteins such as insulin-receptor substrates (IRSs GAB-1) or linkers for activation of T cells (LATs in the case of T cells). [Pg.248]


See other pages where Kinase linkers is mentioned: [Pg.331]    [Pg.331]    [Pg.18]    [Pg.339]    [Pg.214]    [Pg.577]    [Pg.331]    [Pg.331]    [Pg.18]    [Pg.339]    [Pg.214]    [Pg.577]    [Pg.277]    [Pg.278]    [Pg.18]    [Pg.1258]    [Pg.1261]    [Pg.1308]    [Pg.51]    [Pg.112]    [Pg.3]    [Pg.4]    [Pg.42]    [Pg.43]    [Pg.56]    [Pg.224]    [Pg.256]    [Pg.259]    [Pg.266]    [Pg.294]    [Pg.29]    [Pg.305]    [Pg.339]    [Pg.418]    [Pg.420]    [Pg.74]    [Pg.165]    [Pg.319]    [Pg.331]    [Pg.401]    [Pg.436]   
See also in sourсe #XX -- [ Pg.577 ]




SEARCH



© 2024 chempedia.info