Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones Lewis acid complexes

The initial step of the mechanism is the coordination of the first equivalent of the Lewis acid to the carbonyl group of the acylating agent. Next, the second equivalent of Lewis acid ionizes the initial complex to form a second donor-acceptor complex which can dissociate to an acylium ion in ionizing solvents. The typical SsAr reaction gives rise to an aromatic ketone-Lewis acid complex that has to be hydrolyzed to the desired aromatic ketone. [Pg.176]

Depending on the specific reaction conditions, complex 4 as well as acylium ion 5 have been identified as intermediates with a sterically demanding substituent R, and in polar solvents the acylium ion species 5 is formed preferentially. The electrophilic agent 5 reacts with the aromatic substrate, e.g. benzene 1, to give an intermediate cr-complex—the cyclohexadienyl cation 6. By loss of a proton from intermediate 6 the aromatic system is restored, and an arylketone is formed that is coordinated with the carbonyl oxygen to the Lewis acid. Since a Lewis-acid molecule that is coordinated to a product molecule is no longer available to catalyze the acylation reaction, the catalyst has to be employed in equimolar quantity. The product-Lewis acid complex 7 has to be cleaved by a hydrolytic workup in order to isolate the pure aryl ketone 3. [Pg.117]

In the presence of an electrophile, tautomerization of a substrate with a C=0 double bond to its enol only takes place when catalyzed by either a Bronsted- or a Lewis acid. The proton-catalyzed mechanism is shown for the ketone — enol conversion B — iso-B (Figure 12.4), the carboxylic acid —> enol conversion A — E (Figure 12.6), the carboxylic acid bromide — enol conversion E —> G (Figure 12.7) and the carboxylic acid ester — enol conversion diethyl-malonate —> E (Figure 12.9). Each of these enol formations is a two-step process consisting of the protonation to a carboxonium ion and the latter s deprotonation. The mechanism of a Lewis acid-catalyzed enolization is illustrated in Figure 12.5, exemplified by the ketone —> enol conversion A —> iso-A. Again, a protonation to a carboxonium ion and the latter s deprotonation are involved the Lewis acid-complexed ketone acts as a proton source (see below). [Pg.493]

Kobayashi and co-workers. used zirconium-based bromo-BINOL complex for the catalytic enantioselective Mannich-type reaction. The o-hydroxyphenyl imine 3.36 chelates the Zr(IV)(BrBINOL)2 to form the activated chiral Lewis acid complex A. The ketone acetal 3.37 reacts with the Lewis acid complex A to give the complex B. The silyl group is then transferred to the 3-amino ester to form the product 3.38 and the catalyst Zr(BrBINOL)2 is regenerated, which is ready for binding with another imine molecule (Scheme 3.16). [Pg.129]

Lewis acid complexes of -substituted a, 3-unsaturated ketones and aldehydes are unreactive toward alkenes. Crotonaldehyde and 3-penten-2-one cannot be induced to undergo ene reactions like acrolein and methyl vinyl ketone. The presence of a substituent on the -carbon stabilizes the enal- or enone-Lewis acid complex and stericdly retards the approach of an alkene to the -carbon. However, Snider et al. have found that a complex of these ketones and aldehydes with 2 equiv. of EtAlCk reacts reversibly with alkenes to give a zwitterion (22). This zwitterion, which is formed in the absence of a nucleophile, reacts reversibly to give a cyclobutane (23) or undergoes two 1,2-hydride or alkyl shifts to generate irreversibly a p, -disubstituted-a,P-unsaturated carbon compound (24). [Pg.7]

The isolation of the initial aldol products from the condensation of the enolates of carbene complexes and carbonyl compounds is possible if the carbonyl compound is pretreated with a Lewis acid. As indicated in equation (9), the scope of the aldol reaction can also be extended to ketones and enolizable aldehydes by this procedure. The condensations with ketones were most successful when boron trifluoride etherate was employed, and for aldehydes, the Lewis acid of choice is titanium tetrachloride. The carbonyl compound is pretreated with a stoichiometric amount of the Lewis acid and to this is added a solution of the anion generated from the caibene complex. An excess of the carbonyl-Lewis acid complex (2-10 equiv.) is employed however, above 2 equiv. only small improvements in the overall yield are realized. [Pg.1077]

In agreement with ab initio predictions, Lewis acid complexation with a,p-unsaturated carbonyls seems to encourage adoption of the s-trans conformation. In the complexes of conjugated esters and ketones the gearing effect discussed previously may be responsible for the abundance of the (Z)-syn-s-trans conformation. [Pg.298]

Although stereoselective formation of enolates from acyclic ketones with bases such as LDA is rather difficult, stereodefined boron enolates are more readily accessible. In the Mukaiyama method, an ethyl ketone is treated with a dialkylboron triflate and a tertiary amine, usually i-Pr2NEt. The resultant Z-(0) boron enolates (also known as enol borinates) are believed to be formed under kinetic control by deprotonation of the Lewis acid-complexed substrate. Brown and co-workers have shown that E- 0) boron enolates may be prepared by treatment of ethyl ketones with dicyclohexylboron chloride in the presence of Et3N. ... [Pg.248]

R. A. Michelin, E. Pizzo, A. Scarso, P. Sgarbossa, G. Strukul, A. Tassan, Baeyer-Villiger oxidation of ketones catalyzed by platinum(II) Lewis acid complexes containing coordinated electron-poor fluorinated diphosphines, Organometallics 24 (2005) 1012. [Pg.116]

The Friedel-Crafts acylation of alkynes is an extremely rapid reaction, and usually leads to the formation of the f/ flni-P-chlorovinyl ketone (equation 23). Reaction temperatures can be as low as -70 °C. The reaction proceeds via reaction of the acyl halide-Lewis acid complex with the alkyne, and whilst the implied vinyl cation has not been observed directly, the reaction products can be understood in terms of reaction of such an intermediate with nucleophiles, usually halide ion. Whilst the r/-an.r-chlorovinyl ketone has been described as the sole product of the reaction by some workers, others have reported the formation of mixtures of the cis and trans forms, under conditions that did not appear to lead to isomeriza-... [Pg.723]

Complementary to the acylation of enolate anions is the acid-catalyzed acylation of the corresponding enols, where the regiochemistry of acylation can vary from that observed in base-catalyzed reactions. Although the reaction has been studied extensively in simple systems, it has not been widely used in the synthesis of complex molecules. The catalysts most frequently employed are boron trifluoride, aluminum chloride and some proton acids, and acid anhydrides are the most frequently used acylating agents. Reaction is thought to involve electrophilic attack on the enol of the ketone by a Lewis acid complex of the anhydride (Scheme 58). In the presence of a proton acid, the enol ester is probably the reactive nucleophile. In either case, the first formed 1,3-dicarbonyl compound is converted into its borofluoride complex, which may be decomposed to give the 3-d>ketone, sometimes isolated as its copper complex. [Pg.832]

The rearrangement reaction of a variety of alkyl phenyl ethers over a dealumi-nated HY zeolite has been shown to involve both intramolecular and intermolecular processes to afford phenol, (alkoxyalkyl)benzenes and alkylphenols as the main products. o-Benzylphenol has been obtained as the exclusive product in the rearrangement of benzyl phenyl ether in the presence of montmorillonite. The mechanism for a novel zeolite /3-catalysed rearrangement of alkoxybenzyl allyl ethers to aldehydes and ketones has been investigated by the use of cross-over reactions and deuterium labelling. The reaction was found to be mainly intramolecular and has been described as a nucleophilic attack of the double bond on the electrophilic benzylic carbon of the ether-Lewis acid complex, followed by a... [Pg.198]


See other pages where Ketones Lewis acid complexes is mentioned: [Pg.734]    [Pg.734]    [Pg.193]    [Pg.1127]    [Pg.734]    [Pg.734]    [Pg.734]    [Pg.193]    [Pg.1127]    [Pg.734]    [Pg.357]    [Pg.145]    [Pg.145]    [Pg.491]    [Pg.272]    [Pg.287]    [Pg.112]    [Pg.290]    [Pg.363]    [Pg.229]    [Pg.197]    [Pg.180]    [Pg.286]    [Pg.85]    [Pg.272]    [Pg.294]    [Pg.85]    [Pg.272]    [Pg.294]    [Pg.298]    [Pg.577]    [Pg.122]   


SEARCH



Aromatic ketone-Lewis acid complex

Ketones complexes

Lewis acid complexation

Lewis acid complexes

Lewis complexed

© 2024 chempedia.info