Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis acid-enone complex

The stereoselectivity of any particular reaction depends on the details of the structure of the transition state. The structures of several enone-Lewis acid complexes have been determined by X-ray crystallography.11 The site of complexation is the carbonyl oxygen, which maintains a trigonal geometry, but with somewhat expanded angles (130-140°). The Lewis acid is normally anti to the larger carbonyl substituent. Boron trifluoride... [Pg.336]

Lewis acid complexes of -substituted a, 3-unsaturated ketones and aldehydes are unreactive toward alkenes. Crotonaldehyde and 3-penten-2-one cannot be induced to undergo ene reactions like acrolein and methyl vinyl ketone. The presence of a substituent on the -carbon stabilizes the enal- or enone-Lewis acid complex and stericdly retards the approach of an alkene to the -carbon. However, Snider et al. have found that a complex of these ketones and aldehydes with 2 equiv. of EtAlCk reacts reversibly with alkenes to give a zwitterion (22). This zwitterion, which is formed in the absence of a nucleophile, reacts reversibly to give a cyclobutane (23) or undergoes two 1,2-hydride or alkyl shifts to generate irreversibly a p, -disubstituted-a,P-unsaturated carbon compound (24). [Pg.7]

Enhanced reactivity of a diamine-tin(II) enolate complex suggests that the reaction could be made catalytic. Indeed, this has proved to be the case (vide infra). An alternative mechanism where a chiral Lewis acid is formed from the diamine and tin(II) triflate appears less likely as complexation with the diamine would be expected to attenuate the reactivity of the enone Lewis acid complex. [Pg.129]

The enone system has to preferably adopt an s-cis or s-trans conformation in the transition state. Which one is favored may depend on the nature of the Lewis acid. It is generally accepted that Lewis acid complexation dramatically stabilizes the s-trans conformation204. The s-cis conformation, however, may be the more reactive conformation. The dienophile may react selectively in this conformation, if the s-trans and s-cis conformations are in equilibrium. [Pg.405]

A polymeric binaphthyl zinc complex has been used for related epoxidation reactions <1999JOC8149>.A bimetallic samarium-based Lewis acid complex catalyzes the nucleophilic epoxidation of unsaturated carbonyl compounds very efficiently <2002JA14544>. The use of amino acids has organocatalysts for asymmetric epoxidations of enones and enals has been investigated <2005OL2579, 2005JA6964>. [Pg.212]

The key step is an aldol attack of the silyl enol ether with the Lewis-acid complexed electrophile The use of silyl enol ethers can be illustrated in a synthesis of manicone, a conjugated enone that... [Pg.700]

Simple Example Lewis acids, such as AlCl, catalyse the Diels-Alder reaction. Workers used a three-fold excess of butadiene to react with the AlCl complex of 5,6 and 7-membered cyclic enones, e.g, (5), giving excellent yields of eie fused bicyclic ketones (6), Me and H must be cis in (6) as they were aiv in (5). [Pg.181]

Ferrocen-l,l -diylbismetallacycles are conceptually attractive for the development of bimetal-catalyzed processes for one particular reason the distance between the reactive centers in a coordinated electrophile and a coordinated nucleophile is self-adjustable for specific tasks, because the activation energy for Cp ligand rotation is very low. In 2008, Peters and Jautze reported the application of the bis-palladacycle complex 56a to the enantioselective conjugate addition of a-cyanoacetates to enones (Fig. 31) [74—76] based on the idea that a soft bimetallic complex capable of simultaneously activating both Michael donor and acceptor would not only lead to superior catalytic activity, but also to an enhanced level of stereocontrol due to a highly organized transition state [77]. An a-cyanoacetate should be activated by enolization promoted by coordination of the nitrile moiety to one Pd(II)-center, while the enone should be activated as an electrophile by coordination of the olefinic double bond to the carbophilic Lewis acid [78],... [Pg.159]

The mechanism of conjugate addition reactions probably involves an initial complex between the cuprate and enone.51 The key intermediate for formation of the new carbon-carbon bond is an adduct formed between the enone and the organocopper reagent. The adduct is formulated as a Cu(III) species, which then undergoes reductive elimination. The lithium ion also plays a key role, presumably by Lewis acid coordination at the carbonyl oxygen.52 Solvent molecules also affect the reactivity of the complex.53 The mechanism can be outlined as occurring in three steps. [Pg.687]

This finding is also in agreement with another three-component Michael/aldol addition reaction reported by Shibasaki and coworkers [14]. Here, as a catalyst the chiral AlLibis[(S)-binaphthoxide] complex (ALB) (2-37) was used. Such hetero-bimetallic compounds show both Bronsted basicity and Lewis acidity, and can catalyze aldol [15] and Michael/aldol [14, 16] processes. Reaction of cyclopentenone 2-29b, aldehyde 2-35, and dibenzyl methylmalonate (2-36) at r.t. in the presence of 5 mol% of 2-37 led to 3-hydroxy ketones 2-38 as a mixture of diastereomers in 84% yield. Transformation of 2-38 by a mesylation/elimination sequence afforded 2-39 with 92 % ee recrystallization gave enantiopure 2-39, which was used in the synthesis of ll-deoxy-PGFla (2-40) (Scheme 2.8). The transition states 2-41 and 2-42 illustrate the stereochemical result (Scheme 2.9). The coordination of the enone to the aluminum not only results in its activation, but also fixes its position for the Michael addition, as demonstrated in TS-2-41. It is of importance that the following aldol reaction of 2-42 is faster than a protonation of the enolate moiety. [Pg.53]

In the next step of the sequence, the authors sought to introduce a hydroxy-methylene substituent at the unsubstituted 7-position of the enone. This bond construction can be carried out by conducting a Baylis-Hillman reaction with formaldehyde. In this instance, the authors used a modification of the Baylis-Hillman reaction which involves the use of a Lewis acid to activate the enone [26]. Under these conditions, the enone 42 is treated with excess paraformaldehyde in the presence of triethylphosphine (1 equiv), lanthanum triflate (5 mol%), and triethanolamine (50 mol%). It is proposed that the lanthanum triflate forms a complex with the triethanolamine. This complex is able to activate the enone toward 1,4-addition of the nucleophilic catalysts (here, triethylphosphine). In the absence of triethanolamine, the Lewis acid catalyst undergoes nonproductive complexation with the nucleophilic catalyst, leading to diminution of catalysis. Under these conditions, the hydroxymethylene derivative 37 was formed in 70 % yield. In the next step of the sequence, the authors sought to conduct a stereoselective epoxidation of the allylic... [Pg.47]

Carbon monoxide rapidly inserts into the carbon—zirconium bond of alkyl- and alkenyl-zirconocene chlorides at low temperature with retention of configuration at carbon to give acylzirconocene chlorides 17 (Scheme 3.5). Acylzirconocene chlorides have found utility in synthesis, as described elsewhere in this volume [17]. Lewis acid catalyzed additions to enones, aldehydes, and imines, yielding a-keto allylic alcohols, a-hydroxy ketones, and a-amino ketones, respectively [18], and palladium-catalyzed addition to alkyl/aryl halides and a,[5-ynones [19] are examples. The acyl complex 18 formed by the insertion of carbon monoxide into dialkyl, alkylaryl, or diaryl zirconocenes may rearrange to a r 2-ketone complex 19 either thermally (particularly when R1 = R2 = Ph) or on addition of a Lewis acid [5,20,21]. The rearrangement proceeds through the less stable... [Pg.88]

Lewis acid-catalyzed cycloaddihon is also a powerful synthehc method, and various types of cycloaddihon have been reported. In parhcular, enantioselective variants using chiral Lewis acids have been comprehensively studied some of these were used as key reactions for natural product syntheses [5]. However, they generally require one or more heteroatoms in the substrates, such as enones or enoates, to which (chiral) Lewis acids can coordinate. In conhast, in the case of transition-metal-catalyzed cycloadditions, the metals coordinate direchy to the tt-electron and activate unsaturated motifs, which means that the heteroatom(s) are unnecessary. Moreover, the direct coordinahon to the reachon site can realize highly enantioselechve reachon using chiral transihon-metal complexes. [Pg.277]

In many cases a Lewis acid has been added to a cuprate to enhance its reactivity with an enone, but there are also examples for which the Lewis acid-organocopper reagents do not work well, (Scheme 10). Reaction of the bicyclic enonate (24) with Me2CuLi led to smooth conjugate addition,71 but the use of either Me2CuLiBF3 or MeCuBFj resulted in formation of a dark resinous material. It is often difficult to predict when the reaction will go astray, but it should be recognized that a Lewis acid-cuprate complex is not always an effective solution to a reactivity problem. [Pg.181]


See other pages where Lewis acid-enone complex is mentioned: [Pg.482]    [Pg.482]    [Pg.214]    [Pg.149]    [Pg.294]    [Pg.294]    [Pg.294]    [Pg.46]    [Pg.233]    [Pg.1030]    [Pg.535]    [Pg.161]    [Pg.233]    [Pg.384]    [Pg.384]    [Pg.233]    [Pg.389]    [Pg.389]    [Pg.803]    [Pg.162]    [Pg.140]    [Pg.140]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Lewis acid complexation

Lewis acid complexes

Lewis complexed

© 2024 chempedia.info