Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones double bonds

The Cotton effects may be classified into three types168 those arising from chirally perturbed local achiral chromophores (ketones, /i.y-unsaturated ketones, double bonds, benzoates, aromatic compounds) those arising from inherently achiral chromophores, such as conjugated dienes or a,/3-unsaturated ketones those arising from interaction of the various electric transition moments when two or more chromophores which are chirally disposed are positioned nearby in space, intra- or intermolecularly (exciton chirality method)169. [Pg.429]

Oxidation. Potassium ferrate (VI) is a reagent for selective oxidation of primary alcohols and amines to aldehydes and of secondary alcohols to ketones. Double bonds, aldehyde functions, tertiary hydroxyl groups, and tertiary amino groups are resistant to oxidation. The reaction is carried out at room temperature either in water or in aqueous solvents. In fact water is essential for oxidation. The reaction is carried out at an initial pH of 11.5 the final pH is 13.5. In a typical procedure K.2pe04 (0.(X)2 mole)... [Pg.405]

Reductions. Diaryi ketones benzaldehyde and aliphatic ketones double bond only. [Pg.222]

This results in a transfer of the silyl ketene acetal center to the monomer. The process is repeated in each step of the propagation. The ketone double bond acts as the propagating center [391]. [Pg.231]

Sebacic acid (decanedioic) is made on a commercial scale from ricinoleic acid or castor oil (Section 3.3.4). Reaction with sodium hydroxide at 180-270 °C eventually furnishes octan-2-ol and sebacic acid. The reaction probably involves oxidation of secondary alcohol to ketone, double bond migration and retro-aldol cleavage of the 12-oxo-octadec-lO-enoic acid. Sebacic acid has also been made by electrolysis of methyl hydrogen adipate (monomethyl hexanedioate). [Pg.319]

Ketones Double bond between carbon and oxygen 0 X H3C CH3... [Pg.29]

The formation of ethyl isopropylidene cyanoacetate is an example of the Knoevenagel reaction (see Discussion before Section IV,123). With higher ketones a mixture of ammonium acetate and acetic acid is an effective catalyst the water formed is removed by azeotropic distillation with benzene. The essential step in the reaction with aqueous potassium cyanide is the addition of the cyanide ion to the p-end of the ap-double bond ... [Pg.490]

The addition of active methylene compounds (ethyl malonate, ethyl aoeto-acetate, ethyl plienylacetate, nltromethane, acrylonitrile, etc.) to the aP-double bond of a conjugated unsaturated ketone, ester or nitrile In the presence of a basic catalyst (sodium ethoxide, piperidine, diethylamiiie, etc.) is known as the Michael reaction or Michael addition. The reaction may be illustrated by the addition of ethyl malonate to ethyl fumarate in the presence of sodium ethoxide hydrolysis and decarboxylation of the addendum (ethyl propane-1 1 2 3-tetracarboxylate) yields trlcarballylic acid ... [Pg.912]

That double bonded oxygen (a.k.a. ketone) is very amenable to attack and replacement and is the ideal stepping stone to final product. There are a variety of methods to accomplish this intermediate. Many of which Strike is now gonna iay on you ... [Pg.53]

The addition of acetylides to oxiranes yields 3-alkyn-l-ols (F. Sondheimer, 1950 M.A. Adams, 1979 R.M. Carlson, 1974, 1975 K. Mori, 1976). The acetylene dianion and two a -synthons can also be used. 1,4-Diols with a carbon triple bond in between are formed from two carbonyl compounds (V. Jager, 1977, see p. 52). The triple bond can be either converted to a CIS- or frans-configurated double bond (M.A. Adams, 1979) or be hydrated to give a ketone (see pp. 52, 57, 131). [Pg.64]

If a Michael reaction uses an unsymmetrical ketone with two CH-groups of similar acidity, the enol or enolate is first prepared in pure form (p. llff.). To avoid equilibration one has to work at low temperatures. The reaction may then become slow, and it is advisable to further activate the carbon-carbon double bond. This may be achieved by the introduction of an extra electron-withdrawing silyl substituent at C-2 of an a -synthon. Treatment of the Michael adduct with base removes the silicon, and may lead as well to an aldol addition (G. Stork, 1973, 1974 B R.K. Boeckman, Jr., 1974). [Pg.73]

Selective reduction of a benzene ring (W. Grimme, 1970) or a C C double bond (J.E. Cole, 1962) in the presence of protected carbonyl groups (acetals or enol ethers) has been achieved by Birch reduction. Selective reduction of the C—C double bond of an a,ft-unsaturated ketone in the presence of a benzene ring is also possible in aprotic solution, because the benzene ring is redueed only very slowly in the absence of a proton donor (D. Caine, 1976). [Pg.104]

Another possibility for asymmetric reduction is the use of chiral complex hydrides derived from LiAlH. and chiral alcohols, e.g. N-methylephedrine (I. Jacquet, 1974), or 1,4-bis(dimethylamino)butanediol (D. Seebach, 1974). But stereoselectivities are mostly below 50%. At the present time attempts to form chiral alcohols from ketones are less successful than the asymmetric reduction of C = C double bonds via hydroboration or hydrogenation with Wilkinson type catalysts (G. Zweifel, 1963 H.B. Kagan, 1978 see p. 102f.). [Pg.107]

The widely used Moifatt-Pfltzner oxidation works with in situ formed adducts of dimethyl sulfoxide with dehydrating agents, e.g. DCC, AcjO, SO], P4O10, CCXTl] (K.E, Pfitzner, 1965 A.H. Fenselau, 1966 K.T. Joseph, 1967 J.G. Moffatt, 1971 D. Martin, 1971) or oxalyl dichloride (Swem oxidation M. Nakatsuka, 1990). A classical procedure is the Oppenauer oxidation with ketones and aluminum alkoxide catalysts (C. Djerassi, 1951 H. Lehmann, 1975). All of these reagents also oxidize secondary alcohols to ketones but do not attack C = C double bonds or activated C —H bonds. [Pg.133]

The oxidation of the cyclic enol ether 93 in MeOH affords the methyl ester 95 by hydrolysis of the ketene acetal 94 formed initially by regioselective attack of the methoxy group at the anomeric carbon, rather than the a-alkoxy ketone[35]. Similarly, the double bond of the furan part in khellin (96) is converted ino the ester 98 via the ketene acetal 97[l23],... [Pg.34]

Acetoxy-l,7-octadiene (40) is converted into l,7-octadien-3-one (124) by hydrolysis and oxidation. The most useful application of this enone 124 is bisannulation to form two fused six-membered ketonesfl 13], The Michael addition of 2-methyl-1,3-cyclopentanedione (125) to 124 and asymmetric aldol condensation using (5)-phenylalanine afford the optically active diketone 126. The terminal alkene is oxidi2ed with PdCl2-CuCl2-02 to give the methyl ketone 127 in 77% yield. Finally, reduction of the double bond and aldol condensation produce the important intermediate 128 of steroid synthesis in optically pure form[114]. [Pg.442]

The telomer 145 of nitroethane was used for the synthesis of recifeiolide (148)[121], The nitro group was converted into a hydroxy group via the ketone and the terminal double bond was converted into iodide to give 146. The ester 147 of phenythioacetic acid was prepared and its intramolecular alkylation afforded the 12-membered lactone, which was converted into recifeiolide (148),... [Pg.445]

The 3.8-nonadienoate 91, obtained by dimerization-carbonylation, has been converted into several natural products. The synthesis of brevicomin is described in Chapter 3, Section 2.3. Another royal jelly acid [2-decenedioic acid (149)] was prepared by cobalt carbonyl-catalyzed carbonylation of the terminal double bond, followed by isomerization of the double bond to the conjugated position to afford 149[122], Hexadecane-2,15-dione (150) can be prepared by Pd-catalyzed oxidation of the terminal double bond, hydrogenation of the internal double bond, and coupling by Kolbe electrolysis. Aldol condensation mediated by an organoaluminum reagent gave the unsaturated cyclic ketone 151 in 65% yield. Finally, the reduction of 151 afforded muscone (152)[123]. n-Octanol is produced commercially as described beforc[32]. [Pg.445]

Alkenes are cleaved to carbonyl compounds by ozonolysis This reaction IS useful both for synthesis (preparation of aldehydes ketones or car boxyhc acids) and analysis When applied to analysis the carbonyl com pounds are isolated and identified allowing the substituents attached to the double bond to be deduced... [Pg.274]

By analogy to the hydration of alkenes hydration of an alkyne is expected to yield an alcohol The kind of alcohol however would be of a special kind one m which the hydroxyl group is a substituent on a carbon-carbon double bond This type of alcohol IS called an enol (the double bond suffix ene plus the alcohol suffix ol) An important property of enols is their rapid isomerization to aldehydes or ketones under the condi tions of their formation... [Pg.379]


See other pages where Ketones double bonds is mentioned: [Pg.128]    [Pg.243]    [Pg.791]    [Pg.369]    [Pg.547]    [Pg.513]    [Pg.352]    [Pg.128]    [Pg.243]    [Pg.791]    [Pg.369]    [Pg.547]    [Pg.513]    [Pg.352]    [Pg.262]    [Pg.1138]    [Pg.116]    [Pg.119]    [Pg.123]    [Pg.27]    [Pg.58]    [Pg.83]    [Pg.96]    [Pg.105]    [Pg.155]    [Pg.276]    [Pg.278]    [Pg.38]    [Pg.48]    [Pg.200]    [Pg.303]    [Pg.378]    [Pg.519]   
See also in sourсe #XX -- [ Pg.549 , Pg.550 , Pg.551 , Pg.552 ]




SEARCH



Bonded ketone

Bonding ketones

Double bond systems ketones

Double bonds ketone amination

Ketone bond

Ketones carbon-oxygen double bond

© 2024 chempedia.info