Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2-Cyclohexenones ketones

Cu(OTf)2 in the ionic liquid bmim BF4 gave good yields with methyl vinyl ketone, cyclohexenone and p-aryl enmies [237]. Use of bmim BF4 with PdCl2 was also fotmd to give good yields with p-aryl enones [238]. [Pg.80]

Saturated ketones and aldehydes react quickly and in high yields, even with a-substitution. Electronically deactivated ketones (cyclohexenone, acetophenone) and aldehydes (benzalde-hyde), on the other hand, react poorly. Ketones and aldehydes... [Pg.701]

Photochemical transformations of conjugated cyclohexenones, 317 Photochemical transformations of non-conjugatea ketones, 292 Photochemistry of cyclobutanones, 293 Photolysis of nitrites, 253... [Pg.463]

Annelation of enamines or enolates with fluorinated methyl vinyl ketones gives the corresponding cyclohexenones [116, 117] (equation 101)... [Pg.473]

At higher temperatures the mixture of 10 and methyl vinyl ketone yields the 1,4-carbocyclic compound as described previously. Methyl isopropenyl ketone (5), ethyl acetylacrylate (d), 2-cyclohexenone (21), and 1-acetyl-1-cyclohexene (22) also undergo this type of cyclization reaction with enamines at higher temperatures. This cycloalkylation reaction occurs with enamines made of strongly basic amines such as pyrrolidine, but the less reactive morpholine enamine combines with methyl vinyl ketone to give only a simple alkylated product (7). Chlorovinyl ketones yield pyrans when allowed to react with the enamines of either alicyclic ketones or aldehydes (23). [Pg.216]

The Robinson annulation is a two-step process that combines a Michael reaction with an intramolecular aldol reaction. It takes place between a nucleophilic donor, such as a /3-keto ester, an enamine, or a /3-diketone, and an a,/3-unsaturated ketone acceptor, such as 3-buten-2-one. The product is a substituted 2-cyclohexenone. [Pg.899]

The first step of the Robinson annulation is simply a Michael reaction. An enamine or an enolate ion from a jS-keto ester or /3-diketone effects a conjugate addition to an a-,/3-unsaturated ketone, yielding a 1,5-diketone. But as we saw in Section 23.6,1,5-diketones undergo intramolecular aldol condensation to yield cyclohexenones when treated with base. Thus, the final product contains a six-membered ring, and an annulation has been accomplished. An example occurs during the commercial synthesis of the steroid hormone estrone (figure 23.9). [Pg.899]

Carbonyl condensation reactions are widely used in synthesis. One example of their versatility is the Robinson anuulation reaction, which leads to the formation of an substituted cyclohexenone. Treatment of a /3-diketone or /3-keto ester with an a,/3-unsaturated ketone leads first to a Michael addition, which is followed by intramolecular aldol cyclization. Condensation reactions are also used widely in nature for the biosynthesis of such molecules as fats and steroids. [Pg.905]

The presence of the catalyst can also favor multiple Diels-Alder reactions of cycloalkenones. Two typical examples are reported in Schemes 3.6 and 3.7. When (E)-l-methoxy-1,3-butadiene (14) interacted with 2-cyclohexenone in the presence of Yb(fod)3 catalyst, a multiple Diels-Alder reaction occurred [21] and afforded a 1 1.5 mixture of the two tricyclic ketones 15 and 16 (Scheme 3.6). The sequence of events leading to the products includes the elimination of methanol from the primary cycloadduct to afford a bicyclic dienone that underwent a second cycloaddition. Similarly, 4-acetoxy-2-cyclopenten-l-one (17) (Scheme 3.7) has been shown to behave as a conjunctive reagent for a one-pot multiple Diels-Alder reaction with a variety of dienes under AICI3 catalysis, providing a mild and convenient methodology to synthesize hydrofluorenones [22]. The role of the Lewis acid is crucial to facilitate the elimination of acetic acid from the cycloadducts. The results of the reaction of 17 with diene... [Pg.104]

Answer The cyclohexenone is a clue to a Robinson annelation disconnection reveals symmetrical amino ketone (26) as starting material (see page T 147 ior its synthesis). An enamine is again the best control. Ana lysis... [Pg.240]

An unusual reaction was been observed in the reaction of old yellow enzyme with a,(3-unsat-urated ketones. A dismutation took place under aerobic or anaerobic conditions, with the formation from cyclohex-l-keto-2-ene of the corresponding phenol and cyclohexanone, and an analogous reaction from representative cyclodec-3-keto-4-enes—putatively by hydride-ion transfer (Vaz et al. 1995). Reduction of the double bond in a,p-unsaturated ketones has been observed, and the enone reductases from Saccharomyces cerevisiae have been purified and characterized. They are able to carry out reduction of the C=C bonds in aliphatic aldehydes and ketones, and ring double bonds in cyclohexenones (Wanner and Tressel 1998). Reductions of steroid l,4-diene-3-ones can be mediated by the related old yellow enzyme and pentaerythritol tetranitrate reductase, for example, androsta-A -3,17-dione to androsta-A -3,17-dione (Vaz etal. 1995) and prednisone to pregna-A -17a, 20-diol-3,ll,20-trione (Barna et al. 2001) respectively. [Pg.339]

Henry reactions 317-20 hydrosilylations 333 organozinc reagents, addition to ketones 156-80 PrMgCl to cyclohexenone with crown thioether ligands 100-1 see also specific ZnEt2 and ZnR2 addition reactions... [Pg.386]

The enol ethers of P-dicarbonyl compounds are reduced to a, 3-unsaturated ketones by LiAlH4, followed by hydrolysis.115 Reduction stops at the allylic alcohol, but subsequent acid hydrolysis of the enol ether and dehydration leads to the isolated product. This reaction is a useful method for synthesis of substituted cyclohexenones. [Pg.407]

Danishefsky s diene).46 The two donor substituents provide strong regiochemical control. The D-A adducts are trimethylsilyl enol ethers that can be readily hydrolyzed to ketones. The (3-methoxy group is often eliminated during hydrolysis, resulting in formation of cyclohexenones. [Pg.488]

The only other functional group is the conjugated unsaturated ester. This functionality is remote from the stereocenters and the ketone functionality, and does not play a key role in most of the reported syntheses. Most of the syntheses use cyclic starting materials. Those in Schemes 13.4 and 13.5 lead back to a para-substituted aromatic ether. The syntheses in Schemes 13.7 and 13.8 begin with an accessible terpene intermediate. The syntheses in Schemes 13.10 and 13.11 start with cyclohexenone. Scheme 13.3 presents a retrosynthetic analysis leading to the key intermediates used for the syntheses in... [Pg.1174]

Epoxides are reactive substrates, which can easily be isomerized to give aldehydes or ketones. Kulawiec and coworkers have combined a Pd-catalyzed isomerization of mono and diepoxide 6/1-348 or 6/1-349 and 6/1-352 or 6/1-353, followed by an aldol condensation to give either cyclopentenones or cyclohexenones 6/1-350, 6/1-351, 6/1-354 and 6/1-355, respectively (Scheme 6/1.89) [165]. [Pg.416]

Silyl enol ethers of alkenyl methyl ketones can be efficiently cyclized to cyclopentenones and cyclohexenones by treating them with stoichiometric amounts of palladium acetate244 an example indicating the elaboration of this approach to the synthesis of a reduced benzoxepinone derivative, and the suggested244 mechanism of the reaction, are depicted in Scheme 174. [Pg.397]

The 1,2-hydrosilylation of a,/3-unsaturated ketones is possible and provides a convenient route to allyl alcohols. The standard conditions of Et3SiH/TFA lead to overreduction to the saturated alcohol with mesityl oxide 434,439 The combination of EtsSiH/AlCE/HCl with mesityl oxide gives a mixture of the 1,2-reduction product 4-methylbut-3-ene-2-ol and the fully reduced product, 2-methylpent-2-ene.136 The Ph2SiH2/RhH(PPh3)4 reduction of cyclohexenone gives reaction at... [Pg.88]

In 1997, Miyaura and co-workers reported the nonasymmetric version of 1,4-addition of aryl- and alkenylboronic acids to a,/ -unsaturated ketones using rhodium-phosphine complex as the catalyst.97 Later, Hayashi and Miyaura realized the asymmetric 1,4-addition with high catalytic activity and enantioselectivity.98 In the presence of ( y)-BINAP, the reaction of 2-cyclohexenone with 2.5 equiv. of phenylboronic acid gave (A)-3-phenylcyclohexanone with 97% ee (BINAP = 2,2 -bis (diphenylphosphino)-l,l -binaphthyl Scheme 29).99... [Pg.384]


See other pages where 2-Cyclohexenones ketones is mentioned: [Pg.786]    [Pg.907]    [Pg.81]    [Pg.786]    [Pg.907]    [Pg.81]    [Pg.25]    [Pg.104]    [Pg.524]    [Pg.94]    [Pg.391]    [Pg.320]    [Pg.474]    [Pg.109]    [Pg.335]    [Pg.249]    [Pg.252]    [Pg.1030]    [Pg.83]    [Pg.107]    [Pg.129]    [Pg.234]    [Pg.93]    [Pg.136]    [Pg.116]    [Pg.57]    [Pg.391]    [Pg.168]    [Pg.89]    [Pg.54]    [Pg.391]    [Pg.1154]    [Pg.496]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



2-Cyclohexenone

Cyclohexenones

© 2024 chempedia.info