Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones borohydride

Potassium and sodium borohydride show greater selectivity in action than lithium aluminium hydride thus ketones or aldehydes may be reduced to alcohols whilst the cyano, nitro, amido and carbalkoxy groups remain unaffected. Furthermore, the reagent may be used in aqueous or aqueous-alcoholic solution. One simple application of its use will be described, viz., the reduction of m-nitrobenzaldehyde to m-nitrobenzyl alcohol ... [Pg.881]

For most laboratory scale reductions of aldehydes and ketones catalytic hydro genation has been replaced by methods based on metal hydride reducing agents The two most common reagents are sodium borohydride and lithium aluminum hydride... [Pg.628]

Sodium borohydride is especially easy to use needing only to be added to an aque ous or alcoholic solution of an aldehyde or a ketone... [Pg.628]

Sodium borohydride and lithium aluminum hydride react with carbonyl compounds in much the same way that Grignard reagents do except that they function as hydride donors rather than as carbanion sources Figure 15 2 outlines the general mechanism for the sodium borohydride reduction of an aldehyde or ketone (R2C=0) Two points are especially important about this process... [Pg.629]

The mechanism of lithium aluminum hydride reduction of aldehydes and ketones IS analogous to that of sodium borohydride except that the reduction and hydrolysis... [Pg.629]

Reduction to alcohols (Section 15 2) Aide hydes are reduced to primary alcohols and ketones are reduced to secondary alcohols by a variety of reducing agents Catalytic hydrogenation over a metal catalyst and reduction with sodium borohydride or lithium aluminum hydride are general methods... [Pg.713]

Other Borohydrides. Potassium borohydride was formerly used in color reversal development of photographic film and was preferred over sodium borohydride because of its much lower hygroscopicity. Because other borohydrides are made from sodium borohydride, they are correspondingly more expensive. Generally their reducing properties are not sufficiently different to warrant the added cost. Zinc borohydride [17611-70-0] Zn(BH 2> however, has found many appHcations in stereoselective reductions. It is less basic than NaBH, but is not commercially available owing to poor thermal stabihty. It is usually prepared on site in an ether solvent. Zinc borohydride was initially appHed to stereoselective ketone reductions, especially in prostaglandin syntheses (36), and later to aldehydes, acid haHdes, and esters (37). [Pg.304]

A McMurry coupling of (176, X = O Y = /5H) provides ( )-9,ll-dehydroesterone methyl ether [1670-49-1] (177) in 56% yield. 9,11-Dehydroestrone methyl ether (177) can be converted to estrone methyl ether by stereoselective reduction of the C —double bond with triethyi silane in triduoroacetic acid. In turn, estrone methyl ether can be converted to estradiol methyl ether by sodium borohydride reduction of the C17 ketone (199,200). [Pg.436]

Since ivermectin (= 22,23-dihydroavermectin B ) is obtained by catalytic reduction of avermectin B, the same procedure using tritium gas convenientiy affords tritiated ivermectin (22,23- [JT]-22,23-dihydroavermectin B ). The preparation of a tritiated derivative containing a 22,23-double bond starts with the readily available 5-ketone, which is reduced with [JT]-sodium borohydride stereospecificaHy to a 5- [JT]-derivative (40). Carbon-14 labeled avermectins can be obtained by a biosynthetic process using sodium (l- C)propionate as labeled precursor (48). [Pg.284]

Greater selectivity in purification can often be achieved by making use of differences in chemical properties between the substance to be purified and the contaminants. Unwanted metal ions may be removed by precipitation in the presence of a collector (see p. 54). Sodium borohydride and other metal hydrides transform organic peroxides and carbonyl-containing impurities such as aldehydes and ketones in alcohols and ethers. Many classes of organic chemicals can be purified by conversion into suitable derivatives, followed by regeneration. This chapter describes relevant procedures. [Pg.53]

Potassium borohydride is similar in properties and reactions to sodium borohydride, and can similarly be used as a reducing agent for removing aldehydes, ketones and organic peroxides. It is non-hygroscopic and can be used in water, ethanol, methanol or water-alcohol mixtures, provided some alkali is added to minimise decomposition, but it is somewhat less soluble than sodium borohydride in most solvents. For example, the solubility of potassium borohydride in water at 25° is 19g per lOOmL of water (as compared to sodium borohydride, 55g). [Pg.56]

The hydride-donor class of reductants has not yet been successfully paired with enantioselective catalysts. However, a number of chiral reagents that are used in stoichiometric quantity can effect enantioselective reduction of acetophenone and other prochiral ketones. One class of reagents consists of derivatives of LiAlH4 in which some of die hydrides have been replaced by chiral ligands. Section C of Scheme 2.13 shows some examples where chiral diols or amino alcohols have been introduced. Another type of reagent represented in Scheme 2.13 is chiral trialkylborohydrides. Chiral boranes are quite readily available (see Section 4.9 in Part B) and easily converted to borohydrides. [Pg.110]

Table 8.3. Rates of Reduction of Aldehydes and Ketones by Sodium Borohydride... Table 8.3. Rates of Reduction of Aldehydes and Ketones by Sodium Borohydride...
The borohydride reduction rate data are paralleled by the rate data for many other carbonyl addition reactions. In fact, for a series of ketones, most of which are cyclic, a linear free-energy correlation of the form... [Pg.471]

In the early work on the synthesis of prostaglandins, zinc borohydride was used for the reduction of the 15-ketone function and a 1 1 mixture of epimeric 15(S)- and 15(/ )-alcohols was generally obtained. Subsequent studies led to reaction conditions for highly selective reduction to the desired 15(S)-alcohol. Some of the results are summarized in the following table. The most practical method is E which utilizes borane as the stoichiometric reductant and a chiral, enzyme-like catalyst which is shown. [Pg.260]

Although the nature of the general polar effect suggested by Kamernitzsky and Akhrem " to account for axial attack in unhindered ketones is not clear, several groups have reported electrostatic interactions affect the course of borohydride reductions. Thus the keto acid (5a) is not reduced by boro-hydride but its ester (5b) is reduced rapidly further, the reduction of the ester (6b) takes place much more rapidly than that of the acid (6a). Spectroscopic data eliminate the possibility that in (5a) there is an interaction between the acid and ketone groups (e.g. formation of a lactol). The results have been attributed to a direct repulsion by the carboxylate ion as the borohydride ion approaches. " By contrast, House and co-workers observed no electrostatic effect on the stereochemistry of reduction of the keto acid (7). However, in this compound the acid group may occupy conformations in which it does not shield the ketone. Henbest reported that substituting chlorine... [Pg.71]

A solution of 1 g of the ethyleneketal of the trione in 40 ml of methanol is treated with 0.2 g of sodium borohydride and the mixture is stirred at 20° for 2 hr. Slow drop wise addition of water precipitates the reaction product as crystals. These are filtered, washed with water and dried, to give 1.02 g of hydroxy ketone, which after crystallization from methylene dichloride-hexane has mp 182-184° (reported 184-186°) -23° (CHCI3). [Pg.95]

A solution of 0.25 g sodium borohydride in 140 ml of ethanol is added to a stirred solution of 0.56 g of calcium chloride in 60 ml of ethanol at —25°. The vigorously stirred mixture is treated dropwise at —25° over 5 min with 4.87 g of 1 la-hydroxy-5/S-pregnane-3,20-dione in 100 ml of ethanol. After a further 3 hr at —20°, 10 ml of 40% aqueous acetic acid is added and the mixture is evaporated to dryness under vacuum. The residue is dissolved in 150 ml of ether and the ethereal solution is washed with 30 ml of 2 A hydrochloric acid and twice with 30 ml of water and dried over Na2S04. Removal of the solvent gives 4.6 g of crystals, which are recrystallized from 20 ml of ether to yield 2.9 g (60%) of the dihydroxy ketone, mp 182-184° [aj 110° (ethanol). [Pg.97]

Borohydrides reduce a-substituted ketones to the corresponding a-substituted alcohols, and such products can be further reduced to olefins (see section VIII). Other reagents serve, through participation of the carbonyl group, to remove the substituent while leaving the ketone intact. The zinc or chromous ion reduction of a-halo ketones is an example of this second type, which is not normally useful for double bond introduction. However, when the derivative being reduced is an a,jS-epoxy ketone, the primary product is a -hydroxy ketone which readily dehydrates to the a,jS-unsaturated ketone. Since... [Pg.348]

The double bond migration which normally occurs on forming ethylene ketals from A -3-ketones has frequently been utilized to form derivatives of the A -system. The related transformation of A -3-ketones into A -3-alcohols is usually accomplished by treatment of the enol acetate (171) (X = OAc) with borohydride. This sequence apparently depends on reduction of the intermediate (172) taking place faster than conjugation ... [Pg.360]

Enamines of A" -3-ketones (45) are stable to lithium aluminum hydride, but lithium borohydride reduces the 3,4-double bond of the enamine system." In the presence of acetic acid the enamine (45) is reduced by sodium borohydride to the A -3-amine (47) via the iminium cation (46). ... [Pg.386]

A novel reaction of perchloryl fluoride with aromatic substrates was discovered by Neeman and Osawa, the oxofluorination reaction. These authors found that reaction of indene with perchloryl fluoride in dioxane-water yields five products, the major product being, 2-fluoroindanone. When applied to 6-dehydroestradiol diacetate (24) there is obtained as the major product the 7a-fluoro-6-ketone (25). Borohydride reduction of the... [Pg.477]

The success of the halo ketone route depends on the stereo- and regio-selectivity in the halo ketone synthesis, as well as on the stereochemistry of reduction of the bromo ketone. Lithium aluminum hydride or sodium borohydride are commonly used to reduce halo ketones to the /mm-halohydrins. However, carefully controlled reaction conditions or alternate reducing reagents, e.g., lithium borohydride, are often required to avoid reductive elimination of the halogen. [Pg.15]

The properties of chlorine azide resemble those of bromine azide. Pon-sold has taken advantage of the stronger carbon-chlorine bond, i.e., the resistance to elimination, in the chloro azide adducts and thus synthesized several steroidal aziridines. 5a-Chloro-6 -azidocholestan-3 -ol (101) can be converted into 5, 6 -iminocholestan-3l -ol (102) in almost quantitative yield with lithium aluminum hydride. It is noteworthy that this aziridine cannot be synthesized by the more general mesyloxyazide route. Addition of chlorine azide to testosterone followed by acetylation gives both a cis- and a trans-2iddMct from which 4/S-chloro-17/S-hydroxy-5a-azidoandrostan-3-one acetate (104) is obtained by fractional crystallization. In this case, sodium borohydride is used for the stereoselective reduction of the 3-ketone... [Pg.25]


See other pages where Ketones borohydride is mentioned: [Pg.40]    [Pg.319]    [Pg.378]    [Pg.133]    [Pg.213]    [Pg.303]    [Pg.438]    [Pg.439]    [Pg.283]    [Pg.240]    [Pg.79]    [Pg.156]    [Pg.170]    [Pg.256]    [Pg.290]    [Pg.55]    [Pg.62]    [Pg.62]    [Pg.65]    [Pg.74]    [Pg.82]    [Pg.82]    [Pg.92]    [Pg.483]    [Pg.42]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Ammonium borohydride, tetraalkyltriazolyl ketone reduction

Borohydride reduction of ketone

Borohydride reduction, ketones

Borohydride reduction, ketones enantioselective

Borohydrides, monoalkylreduction cyclic ketones

Ketone reduction with sodium borohydride

Ketones conjugate reductions, sodium borohydride

Ketones reduction by sodium borohydride

Ketones with borohydride

Ketones, reaction with aluminum borohydride

Ketones, reaction with zinc borohydride

Lithium borohydride aliphatic ketones

Lithium borohydride aromatic ketones

Lithium borohydride ketones

Lithium borohydride, reduction ketones

Reduction of Ketones Using Enantioselective Borohydride Reagents

Sodium Borohydride Reduction of an Aldehyde or Ketone

Sodium borohydride aliphatic ketones

Sodium borohydride cyclic ketone reduction

Sodium borohydride ketones

Sodium borohydride ketones, aryl

Sodium borohydride nitro ketones

Sodium borohydride of aldehydes and ketones

Sodium borohydride saturated ketones

Sodium borohydride selective ketone reduction

Sodium borohydride unsaturated ketones

Sodium borohydride, reaction with ketones

Sodium borohydride, reaction with ketones and aldehydes

Tetrabutylammonium borohydride ketones

Zinc borohydride ketone reduction

© 2024 chempedia.info