Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones arylation enantioselective

Prochiral aryl and dialkyl ketones are enantioselectively reduced to the corresponding alcohols using whole-cell bioconversions, or an Ir1 amino sulfide catalyst prepared in situ.695 Comparative studies show that the biocatalytic approach is the more suitable for enantioselective reduction of chloro-substituted ketones, whereas reduction of a,/ -unsaturated compounds is better achieved using the Ir1 catalyst. An important step in the total synthesis of brevetoxin B involves hydrogenation of an ester using [Ir(cod)(py) P(cy)3 ]PF6.696... [Pg.228]

Jiang et al.4 have recently succeeded in hydrogenating both aryl alkyl and dialkyl ketones. High enantioselectivity was obtained using PennPhos (19)-coordinated Rh complex as the catalyst. This success is based on the finding that a weak base (such as 2,6-lutidine) can facilitate the Rh-catalyzed hydrogenation of simple ketones (Scheme 6 35). [Pg.364]

In cases where Noyori s reagent (see p. 102f.) and other enantioselective reducing agents are not successful, (+)- or (—)-chlorodiisopinocampheylborane (Ipc BCl) may help. This reagent reduces prochiral aryl and tert-alkyl ketones with exceptionally high enantiomeric excesses (J. Chandrasekharan, 1985 H.C. Brown, 1986). The initially formed boron moiety is usually removed hy precipitation with diethanolamine. Ipc2BCl has, for example, been applied to synthesize polymer-supported chiral epoxides with 90% e.e. from Merrifield resins (T. Antonsson, 1989). [Pg.108]

Until this work, the reactions between the benzyl sulfonium ylide and ketones to give trisubstituted epoxides had not previously been used in asymmetric sulfur ylide-mediated epoxidation. It was found that good selectivities were obtained with cyclic ketones (Entry 6), but lower diastereo- and enantioselectivities resulted with acyclic ketones (Entries 7 and 8), which still remain challenging substrates for sulfur ylide-mediated epoxidation. In addition they showed that aryl-vinyl epoxides could also be synthesized with the aid of a,P-unsaturated sulfonium salts lOa-b (Scheme 1.4). [Pg.5]

Combination of nickel bromide (or nickel acetylacetonate) and A. A -dibutylnorephcdrinc catalyzed the enantioselective conjugate addition of dialkylzincs to a./Tunsaturated ketones to afford optically active //-substituted ketones in up to ca. 50% ee53. Use of the nickel(II) bipyridyl-chiral ligand complex in acetonitrile/toluenc as an in situ prepared catalyst system afforded the //-substituted ketones 2, from aryl-substituted enones 1, in up to 90% ee54. [Pg.910]

Various aryl-alkyl ketones and dialkyl ketones could be reduced using the Rh(III) - NHC catalyst 55 in high yields (82-96%) and with good to excellent enantioselectivities (67-98% ee) (Scheme 34). [Pg.212]

Ketones used in this report are reduced by the cyanobacterium with excellent enan-tioselectivities (> 96% ee). An enzyme exhibiting high enantioselectivity usually shows a relatively strict substrate specificity hence, there scarcely is a catalyst that reacts with many kinds of substrates and also shows high select vities. This alga can reduce a wide variety of aryl methyl ketones and afford the corresponding alcohols with high enantioselectivities. [Pg.52]

In addition, the most efficient mem-ligand depicted above was successfully applied, in 2006, to the alkynylation of ketones. Thus, Liu et al. showed that this ligand was able to catalyse the enantioselective addition of phenylacetylene to various ketones, using Cu(OTf)2 as the starting base in toluene. The results were excellent and homogeneous not only for substituted aryl alkyl ketones, but also for aliphatic methyl ketones (Scheme 4.6). [Pg.164]

In 2008, these authors reported a new strategy to attach chiral trans-l-arenesulfonylamino-2-isoborneolsulfonylaminocyclohexane to an achiral Frechet dendron (polyether having a repeated 3,5-dioxybenzyl structure) by a radical approach.The dendrimers obtained were successfully used in the enantioselective nucleophilic alkylation and arylation of ketones, providing... [Pg.177]

In 2001, a screening study for the enantioselective reduction of various aryl ketones was developed by Petra et al. in the presence of amino sulfide... [Pg.271]

In another context, chiral thioimidazolidine ligands have been successfully applied to the ruthenium-catalysed asymmetric hydrogen transfer of several aryl ketones by Kim et al., furnishing the corresponding chiral alcohols with high yields and enantioselectivities of up to 77% ee (Scheme 9.12). ... [Pg.278]

The majority of catalytic enantioselective allylation reactions involve the chiral Lewis-acid-catalysed additions of allylsilanes or allylstannanes to carbonyl compounds. Monothiobinaphthol has been used by Woodward et al. as a chiral promoter in the enantioselective catalytic allylation of aryl ketones with impure Sn(allyl)4, prepared from allyl chloride, air-oxidised magnesium and SnCl4. Therefore, the allylation of arylketones in these conditions was achieved very efficiently, since the corresponding allylic alcohols were formed in... [Pg.310]

Another approach in the use of chiral S/P ligands for the hydrosilylation reaction of ketones was proposed more recently by Evans et Thus, in 2003, these workers studied the application of new chiral thioether-phosphinite ligands to enantioselective rhodium-catalysed ketone hydrosilylation processes. For a wide variety of ketones, such as acyclic aryl alkyl and dialkyl ketones as well as cyclic aryl alkyl ketones and also cyclic keto esters, the reaction gave high levels of enantioselectivity of up to 99% ee (Scheme 10.44). [Pg.330]

Other S/N ligands have been investigated in the enantioselective catalytic reduction of ketones with borane. Thus, Mehler and Martens have reported the synthesis of sulfur-containing ligands based on the L-methionine skeleton and their subsequent application as new chiral catalysts for the borane reduction of ketones." The in situ formed chiral oxazaborolidine catalyst has been used in the reduction of aryl ketones, providing the corresponding alcohols in nearly quantitative yields and high enantioselectivities of up to 99% ee, as shown in Scheme 10.60. [Pg.338]

Several other ehiral S/O ligands have been involved by Yang and Lee in this type of reaetions, sueh as [(lf ,25 ,3f )-3-mercaptocamphan-2-ol)], MerCO, whieh produeed, when applied to aryl methyl ketones, the corresponding 1-aryl ethyl alcohols in enantioselectivities of up to 92% ee (Scheme 10.63)." ... [Pg.342]

In 2000, Woodward et al. reported that LiGaH4, in combination with the S/ 0-chelate, 2-hydroxy-2 -mercapto-1,1 -binaphthyl (MTBH2), formed an active catalyst for the asymmetric reduction of prochiral ketones with catecholborane as the hydride source (Scheme 10.65). The enantioface differentiation was on the basis of the steric requirements of the ketone substituents. Aryl w-alkyl ketones were reduced in enantioselectivities of 90-93% ee, whereas alkyl methyl ketones e.g. i-Pr, Cy, t-Bu) gave lower enantioselectivities of 60-72% ee. [Pg.343]

Related catalysts include both a chiral BINAP-type phosphine and a chiral diamine ligand. A wide range of aryl ketones gave more than 95% enantioselectivity when substituted-l,l -binaphthyl and ethylene diamines were used.52... [Pg.392]

Optically active /3-ketoiminato cobalt(III) compounds based on chiral substituted ethylenedi-amine find use as efficient catalysts for the enatioselective hetero Diels Alder reaction of both aryl and alkyl aldehydes with l-methoxy-(3-(t-butyldimethylsilyl)oxy)-1,3-butadiene.1381 Cobalt(II) compounds of the same class of ligands promote enantioselective borohydride reduction of ketones, imines, and a,/3-unsaturated carboxylates.1382... [Pg.118]


See other pages where Ketones arylation enantioselective is mentioned: [Pg.365]    [Pg.103]    [Pg.132]    [Pg.134]    [Pg.240]    [Pg.240]    [Pg.1306]    [Pg.719]    [Pg.102]    [Pg.271]    [Pg.385]    [Pg.247]    [Pg.488]    [Pg.201]    [Pg.211]    [Pg.1417]    [Pg.214]    [Pg.246]    [Pg.158]    [Pg.160]    [Pg.161]    [Pg.171]    [Pg.173]    [Pg.177]    [Pg.276]    [Pg.320]    [Pg.330]    [Pg.416]    [Pg.1336]    [Pg.220]    [Pg.256]    [Pg.140]   
See also in sourсe #XX -- [ Pg.276 , Pg.277 ]




SEARCH



Aryl ketones

Enantioselective arylation

Ketones arylation

Ketones enantioselective

© 2024 chempedia.info