Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketene lactones

In the presence of a double bond at a suitable position, the CO insertion is followed by alkene insertion. In the intramolecular reaction of 552, different products, 553 and 554, are obtained by the use of diflerent catalytic spe-cies[408,409]. Pd(dba)2 in the absence of Ph,P affords 554. PdCl2(Ph3P)3 affords the spiro p-keto ester 553. The carbonylation of o-methallylbenzyl chloride (555) produced the benzoannulated enol lactone 556 by CO, alkene. and CO insertions. In addition, the cyclobutanone derivative 558 was obtained as a byproduct via the cycloaddition of the ketene intermediate 557[4I0]. Another type of intramolecular enone formation is used for the formation of the heterocyclic compounds 559[4l I]. The carbonylation of the I-iodo-1,4-diene 560 produces the cyclopentenone 561 by CO. alkene. and CO insertions[409,4l2]. [Pg.204]

Silyl enol ethers are other ketone or aldehyde enolate equivalents and react with allyl carbonate to give allyl ketones or aldehydes 13,300. The transme-tallation of the 7r-allylpalladium methoxide, formed from allyl alkyl carbonate, with the silyl enol ether 464 forms the palladium enolate 465, which undergoes reductive elimination to afford the allyl ketone or aldehyde 466. For this reaction, neither fluoride anion nor a Lewis acid is necessary for the activation of silyl enol ethers. The reaction also proceed.s with metallic Pd supported on silica by a special method[301j. The ketene silyl acetal 467 derived from esters or lactones also reacts with allyl carbonates, affording allylated esters or lactones by using dppe as a ligand[302]... [Pg.352]

The reaction can be applied to the synthesis of q, /3-unsaturated esters and lactones by treatment of the ketene silyl acetal 551 with an allyl carbonate in boiling MeCN[356]. The preparation of the q,, 3-unsaturated lactone 552 by this method has been used in the total synthesis of lauthisan[357]. [Pg.364]

P-Hydroxy acids lose water, especially in the presence of an acid catalyst, to give a,P-unsaturated acids, and frequendy P,y-unsaturated acids. P-Hydroxy acids do not form lactones readily because of the difficulty of four-membered ring formation. The simplest P-lactone, P-propiolactone, can be made from ketene and formaldehyde in the presence of methyl borate but not from P-hydroxypropionic acid. P-Propiolactone [57-57-8] is a usehil intermediate for organic synthesis but caution should be exercised when handling this lactone because it is a known carcinogen. [Pg.517]

Simple olefins do not usually add well to ketenes except to ketoketenes and halogenated ketenes. Mild Lewis acids as well as bases often increase the rate of the cyclo addition. The cycloaddition of ketenes to acetylenes yields cyclobutenones. The cycloaddition of ketenes to aldehydes and ketones yields oxetanones. The reaction can also be base-cataly2ed if the reactant contains electron-poor carbonyl bonds. Optically active bases lead to chiral lactones (41—43). The dimerization of the ketene itself is the main competing reaction. This process precludes the parent compound ketene from many [2 + 2] cyclo additions. Intramolecular cycloaddition reactions of ketenes are known and have been reviewed (7). [Pg.474]

DimeriZa.tlon. A special case of the [2 + 2] cyclo additions is the dimerization of ketenes. Of the six possible isomeric stmctures, only the 1,3-cyclobutanediones and the 2-oxetanones (P-lactones) are usually formed. Ketene itself gives predominandy (80—90%) the lactone dimer, 4-methylene-2-oxetanone (3), called diketene [674-82-8], approximately 5% is converted to the symmetrical dimer, 1,3-cyclobutanedione [15506-53-3] (4) which undergoes enol-acetylation to so-called triketene [38425-52-4] (5) (44). [Pg.474]

Another principal use of ketene is in the production of sorbic acid [110-44-1] (80,81). In this process, which requires an acidic or manganese(II) catalyst, ketene adds to crotonaldehyde [123-73-9] (8) with subsequent conversion of the P-lactone and the polyester to sorbic acid (qv) (9). [Pg.476]

Ketene can also be added to trihalosubstituted aldehydes or ketones (12) to form 4-trihalomethyloxetanones. If this addition is performed in the presence of optically active bases such as quinine [130-95-0] chiral lactones are obtained (41,42). [Pg.477]

Very Htde is known about the toxicology of other dimeric ketenes. For the dimeric dimethylketene there is equivocal evidence of tumors resulting from massive exposure in rats reported for the P-lactone form (3,3-dimethyl-4-isopropyhdene-2-oxetanone), whereas the symmetric form (2,2,4,4 tetramethylcyclobutane-l,3-dione) induces tumors in mice after lengthy skin appHcations. [Pg.480]

Carbonyl Compounds. Cychc ketals and acetals (dioxolanes) are produced from reaction of propylene oxide with ketones and aldehydes, respectively. Suitable catalysts iaclude stannic chloride, quaternary ammonium salts, glycol sulphites, and molybdenum acetyl acetonate or naphthenate (89—91). Lactones come from Ph4Sbl-cataly2ed reaction with ketenes (92). [Pg.135]

The first synthesis of sorbic acid was from crotonaldehyde [4170-30-3] and malonic acid [141-82-2] in pyridine in 32% yield (2,17,18)- The yield can be improved with the use of malonic acid salts (19). One of the first commercial methods involved the reaction of ketene and crotonaldehyde in the presence of boron trifluoride in ether at 0°C (20,21). A P-lactone (4) forms and then reacts with acid, giving a 70% yield. [Pg.283]

Unsubstituted 3-alkyl- or 3-aryl-isoxazoles undergo ring cleavage reactions under more vigorous conditions. In these substrates the deprotonation of the H-5 proton is concurrent with fission of the N—O and C(3)—-C(4) bonds, giving a nitrile and an ethynolate anion. The latter is usually hydrolyzed on work-up to a carboxylic acid, but can be trapped at low temperature. As shown by Scheme 33, such reactions could provide useful syntheses of ketenes and /3-lactones (79LA219). [Pg.30]

The highest priority ring disconnective T-goals for 272 are those which disconnect a cocyclic 5,5-fusion bond and offexendo bond pair. The internal ketene-olefin cycloaddition in tactical combination with the Baeyer-Villiger transform is well suited to the double disconnection of such a cyclopentane-y-lactone ring pair. [Pg.91]

Aromatic aldehydes and cyclic perfluoroketones are oxidized to a-hydroxy hydroperoxides or bis(a-hydroxy) peroxides, aliphatic ketones are converted to esters, and ketenes are converted to a-lactones... [Pg.343]

Pcr/Zii jr(j(l-ethyl-l-methylpropyl)(l-methylpropyl) ketene is epoxidized by sodium hypochlorite to a stable a-lactone [75] (equation 66). [Pg.344]

Four-membered heterocycles are easily formed via [2-I-2] cycloaddition reac tions [65] These cycloaddmon reactions normally represent multistep processes with dipolar or biradical intermediates The fact that heterocumulenes, like isocyanates, react with electron-deficient C=X systems is well-known [116] Via this route, (1 lactones are formed on addition of ketene derivatives to hexafluoroacetone [117, 118] The presence of a trifluoromethyl group adjacent to the C=N bond in quinoxalines, 1,4-benzoxazin-2-ones, l,2,4-triazm-5-ones, and l,2,4-tnazin-3,5-diones accelerates [2-I-2] photocycloaddition processes with ketenes and allenes [106] to yield the corresponding azetidine derivatives Starting from olefins, fluonnaied oxetanes are formed thermally and photochemically [119, 120] The reaction of 5//-l,2-azaphospholes with fluonnated ketones leads to [2-i-2j cycloadducts [121] (equation 27)... [Pg.853]

Dihydropyrans have been produced by the 1,3 cycloaddition of methyl vinyl ketone (77) or acrolein (29-J7) with enamines (see Section II.A.2). S-Lactones have been formed as a side product in the reaction of dimethyl ketene with enamines (77), and as the primary products in the reaction of excess ketene with enamines derived from ketones (75) (see Section II.A.4). [Pg.234]

An alternative route to acrylic esters is via a (3-propiolactone intermediate. The lactone is obtained by the reaction of formaldehyde and ketene, a dehydration product of acetic acid ... [Pg.217]

Silyl enol ethers and ketene acetals derived from ketones, aldehydes, esters and lactones are converted into the corresponding o/i-unsaturated derivatives on treatment with allyl carbonates in high yields in the catalytic presence of the palladium-bis(diphenylphosphino)ethane complex (32). A phosphinc-free catalyst gives higher selectivity in certain cases, such as those involving ketene acetals. Nitrile solvents, such as acetonitrile, are essential for success. [Pg.67]

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

Both alcohols and phenols add to ketenes to give carboxylic esters (R2C=C= O+ROH —> R2CHC02R). This has been done intramolecularly (with the ketene end of the molecule generated and used in situ) to form medium- and large-ring lactones. In the presence of a strong acid, ketene reacts with aldehydes or ketones (in their enol forms) to give enol acetates. [Pg.997]

Aldehydes, ketones, and quinones react with ketenes to give P-lactones, diphenylk-... [Pg.1249]

This dimerization is so rapid that ketene does not form P-lactones with aldehydes or ketones, except at low temperatures. Other ketenes dimerize more slowly. In these cases the major dimerization product is not the P-lactone, but a cyclobutanedione (see 15-61). However, the proportion of ketene that dimerizes to p-lactone can be increased by the addition of catalysts such as triethylamine or triethyl phosphite. Ketene acetals R2C=C(OR )2 add to aldehydes and ketones in the presence of ZnCl2 to give the corresponding oxetanes. ... [Pg.1249]

The dimerization of the parent ketene gives the P-lactone. One molecule of ketene reacts across the C=C bond as a donor and the other molecule reacts across the C=0 bond as an acceptor. This is similar to the concerted [2+2] cycloaddition reaction between bis(trifluoromethyl)ketene and ethyl vinyl ether to afford the oxetane (Scheme 26) [127], A lone pair on the carbonyl oxygen in the ketene molecule as a donor activates the C=C bond as the alkoxy group in vinyl ether. [Pg.48]

Dimerization of methylketene is catalyzed by an amine, trimethylsilylquinine, to give the P-lactone enantioselectively (Scheme 27) [129]. The catalyst amine attacks the ketene to form an ammonium enolate, an electron donating alkene. The donor is strong enough to react with a ketene across the C=0 bond. That is why the P-lactone is obtained instead of the 1,3-cyclobutandione, the uncatalyzed dimerization product of the monosubstituted ketene. [Pg.48]

Ketene dimer (28), made from [ " Cl-labelled acetic acid, has been used to make doubly labelled mevalonic lactone (29) for studies on the biosynthesis of terpenes. Note... [Pg.398]

Conversion of Free or Silylated Carboxylic Acids into Esters, Thioesters, Lactones, or Ketenes. Transesterification of Esters with Alcohols... [Pg.70]


See other pages where Ketene lactones is mentioned: [Pg.71]    [Pg.71]    [Pg.71]    [Pg.71]    [Pg.142]    [Pg.210]    [Pg.476]    [Pg.479]    [Pg.159]    [Pg.127]    [Pg.302]    [Pg.302]    [Pg.773]    [Pg.776]    [Pg.953]    [Pg.227]    [Pg.998]    [Pg.1077]    [Pg.1249]    [Pg.476]    [Pg.73]   
See also in sourсe #XX -- [ Pg.16 , Pg.745 ]

See also in sourсe #XX -- [ Pg.16 ]




SEARCH



Conversion of ketene lactone

Ketenes, preparation from 0-lactones

Lactones ketenes

Lactones ketones and ketene

Lactones of silyl ketene acetals

P-Lactones via ketenes and carbonyls

Thiol lactones via acylation with anhydrides, ketenes and esters

© 2024 chempedia.info