Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isoxazolidines nitrone cycloaddition reactions

Isoxazolidines from Intermolecular Nitrone Cycloaddition Reactions. 59... [Pg.1]

Cycloaddition to endocyclic unsaturation has been used by many researchers for the preparation of isoxazoUdinyl adducts with y-lactams derived from pyrogluta-minol and is discussed later in this chapter as a synthesis of unusual amino acids (Scheme 1.20, Section 1.6) (79,80). A related a,p-unsaturated lactam has been prepared by a nitrone cycloaddition route in the total synthesis of the fungal metabolite leptosphaerin (81). A report of lactam synthesis from acyclic starting materials is given in the work of Chiacchio et al. (82) who prepared isoxazolidine (47) via an intramolecular nitrone cycloaddition reaction (Scheme 1.11). [Pg.10]

Kanemasa e t al. had found that Ni( 11) and F e (11) chiral complexes derived from 4,6-dibenzofurandiyl-2,2 -bis(4-phenyloxazoline)-Ph ligand act as chiral Lewis acids to make isoxazolidines through nitrone cycloadditions reactions. Strong binding of nitrones to catalysts is a serious problem in the Lewis acid catalyzed nitrone cycloadditions, and therefore, bidentate dipolarophile such as 3-(2-alkenoyl)-2-oxazolidinones have been mostly used to protect the tight coordination of acceptors to the catalysts. Recently, they reported that Ni(II), Zn(II), Mg(II), and Co(II) complexes with (R,R)-DBFOX-Ph ligand catalyzed enantioselective nitrone reactions to a variety of... [Pg.346]

Nitronates derived from primary nitroalkanes can be regarded as a synthetic equivalent of nitrile oxides since the elimination of an alcohol molecule from nitronates adds one higher oxidation level leading to nitrile oxides. This direct / -elimination of nitronates is known to be facilitated in the presence of a Lewis acid or a base catalyst [66, 72, 73]. On the other hand, cycloaddition reactions of nitronates to alkene dipolarophiles produce N-alkoxy-substituted isoxazolidines as cycloadducts. Under acid-catalyzed conditions, these isoxazolidines can be transformed into 2-isoxazolines through a ready / -elimination, and 2-isoxazolines correspond to the cycloadducts of nitrile oxide cycloadditions to alkenes [74]. [Pg.272]

The 1,3-dipolar cycloaddition reaction of nitrones with alkenes gives isoxazolidines is a fundamental reaction in organic chemistry and the available literature on this topic of organic chemistry is vast. In this reaction until three contiguous asymmetric centers can be formed in the isoxazolidine 17 as outlined for the reaction between a nitrone and an 1,2-disubstituted alkene. The relative stereochemistry at C-4 and C-5 is always controlled by the geometric relationship of the substituents on the alkene (Scheme 8.6). [Pg.321]

Alkenylboronic esters undergo regio- and stereoselective 1,3-dipolar cycloadditions with nitrones. These reactions lead to boronic ester-substituted isoxazolidines, which can be converted by oxidation with H202 to the corresponding 4-hydroxy derivatives (Eq. 8.48).69 The high selectivity could be the result of a favorable interaction between the boronic ester and the amino group. [Pg.251]

Various kinds of chiral acyclic nitrones have been devised, and they have been used extensively in 1,3-dipolar cycloaddition reactions, which are documented in recent reviews.63 Typical chiral acyclic nitrones that have been used in asymmetric cycloadditions are illustrated in Scheme 8.15. Several recent applications of these chiral nitrones to organic synthesis are presented here. For example, the addition of the sodium enolate of methyl acetate to IV-benzyl nitrone derived from D-glyceraldehyde affords the 3-substituted isoxazolin-5-one with a high syn selectivity. Further elaboration leads to the preparation of the isoxazolidine nucleoside analog in enantiomerically pure form (Eq. 8.52).78... [Pg.254]

As for the regioselectivity of the nitrone cycloaddition to MCP and its alkyl or aryl derivatives, a tendency of the three-membered ring to end up at the 4-position of the final isoxazolidine ring clearly emerges from the experimental findings. This result is particularly noteworthy if compared to regiospecific formation of the 5,5-disubstituted isoxazolidines in the reactions of nitrones, not... [Pg.48]

Related to the nitrile oxide cycloadditions presented in Scheme 6.206 are 1,3-dipolar cycloaddition reactions of nitrones with alkenes leading to isoxazolidines. The group of Comes-Franchini has described cycloadditions of (Z)-a-phenyl-N-methylnitrone with allylic fluorides leading to enantiopure fluorine-containing isoxazolidines, and ultimately to amino polyols (Scheme 6.207) [374]. The reactions were carried out under solvent-free conditions in the presence of 5 mol% of either scandium(III) or indium(III) triflate. In the racemic series, an optimized 74% yield of an exo/endo mixture of cycloadducts was obtained within 15 min at 100 °C. In the case of the enantiopure allyl fluoride, a similar product distribution was achieved after 25 min at 100 °C. Reduction of the isoxazolidine cycloadducts with lithium aluminum hydride provided fluorinated enantiopure polyols of pharmaceutical interest possessing four stereocenters. [Pg.238]

Dipolar cycloaddition reactions between three A-benzyl-C-glycosyl nitrones and methyl acrylate afforded key intermediates for the synthesis of glyco-syl pyrrolidines. It was found that furanosyl nitrones (574) and (575) reacted with methyl acrylate to give mixtures of all possible 3,5-disubstituted isoxazolidines (577) and (578). On the other hand, the reaction with pyranosyl nitrone (576) was much more selective and cycloaddition at ambient temperatures afforded only one of the possible Re-endo adducts (579a). The obtained isoxazolidines were transformed into the corresponding (V-benzyl-3-hydroxy-2-pyrrolidinones (580—582) on treatment with Zn in acetic acid (Scheme 2.264) (773). [Pg.338]

The 1,3-dipolar cycloaddition of nitrones to vinyl ethers is accelerated by Ti(IV) species. The efficiency of the catalyst depends on its complexation capacity. The use of Ti( PrO)2Cl2 favors the formation of trans cycloadducts, presumably, via an endo bidentate complex, in which the metal atom is simultaneously coordinated to the vinyl ether and to the cyclic nitrone or to the Z-isomer of the acyclic nitrones (800a). Highly diastereo- and enantioselective 1,3-dipolar cycloaddition reactions of nitrones with alkenes, catalyzed by chiral polybi-naphtyl Lewis acids, have been developed. Isoxazolidines with up to 99% ee were obtained. The chiral polymer ligand influences the stereoselectivity to the same extent as its monomeric version, but has the advantage of easy recovery and reuse (800b). [Pg.358]

Cycloaddition of 3-methylenephthalide with ot./V-diphenylnitrone gave two diastereoisomers of 2,3-diphenyl-2,3-dihydrospiro 1,3-oxazole-5(47/ )l (3 H)-2-benzoluran]-3 -one (805). The 1,3-dipolar cycloaddition reaction of /V-benzyl-C-(2-furyl)nitrones with electron-rich alkenes gave preferentially trans-3,5-disubstituted isoxazolidines (endo approach). These experimental results are in good qualitative agreement with those predicted from semiempirical (AMI and PM3) and ab initio (HF/3-21G) calculations (806). [Pg.361]

Both C-alkylation products and the corresponding O-alkyl nitronates were detected in the reaction mixture prepared by the reactions of above mentioned salt with primary alkyl halides (Scheme 3.9, Eq. 1). However, isoxazolidines (1) are the main identified products of the reactions with secondary or tertiary alkyl halides. The possible pathway of their formation is shown in Scheme 3.9. Here, the key event is generation of the corresponding olefins from alkyl halides. These olefins can be trapped with O-nitronates that are simultaneously formed in [3 + 2]-cycloaddition reactions. Presumably, these olefins are generated through deprotonation of stabilized cationic intermediates (see Scheme 3.9). [Pg.442]

If X = AcO, intermediate SENA can be trapped by methyl acrylate in the [3+ 2]-cycloaddition reaction (isoxazolidine (416)). If X=C1, attempts to trap silyl nitronate failed however, nitroethylene was detected in a Diels-Alder reaction. By contrast, SENAs, in which X=OSiMe3 or NHPh, are quite stable. Therefore, the substituents X can be arranged in the following series of increasing elimination rates of SiX Cl > AcO > > PhNH. [Pg.655]

While numerous nitrones react with olefins to form isoxazolidines (l-oxa-2-azacyclo-pentanes) by a formally simple [3 + 2] cycloaddition reaction, there have been few calorimetric investigations of this process. Among these is the reaction of some -substituted... [Pg.60]

Borrachero et al. (180) prepared a number of sugar isoxazolidines by the reaction of carbohydrate-functionalized nitrones with nitroalkenes (Scheme 1.33). They found a matched pair of chiral sugar cycloaddition reaction partners to be... [Pg.27]


See other pages where Isoxazolidines nitrone cycloaddition reactions is mentioned: [Pg.3]    [Pg.59]    [Pg.67]    [Pg.1165]    [Pg.13]    [Pg.69]    [Pg.77]    [Pg.4]    [Pg.216]    [Pg.277]    [Pg.323]    [Pg.288]    [Pg.290]    [Pg.807]    [Pg.26]    [Pg.807]    [Pg.369]    [Pg.86]    [Pg.384]    [Pg.597]    [Pg.10]    [Pg.13]    [Pg.20]    [Pg.24]    [Pg.32]    [Pg.33]    [Pg.37]    [Pg.48]   


SEARCH



Isoxazolidine

Isoxazolidine nitrone

Isoxazolidines

Isoxazolidines, cycloaddition

Isoxazolidines, cycloaddition reactions

Nitronates cycloadditions

Nitrone reactions

Nitrones cycloaddition

Nitrones isoxazolidines

Nitrones, cycloaddition reactions

Nitrones, cycloadditions

Nitrones, reactions

© 2024 chempedia.info