Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isothermal axial dispersion

Consider (so that an analytical solution can be obtained) an isothermal, axially-dispersed PFR accomplishing a first-order reaction. The material balance for this reactor can be written as ... [Pg.277]

An axial composition profile (or breakthrough curve) having a shape that relaxes gradually as the front moves along the axis. This is characteristic of desorption for a system that has a favorable isotherm. Axial dispersion exhibits a similar effect but may affect uptake and release. [Pg.1122]

Lee, C. K., Morbidelli, M., and Varma, A. Steady state multiplicity behavior of an isothermal axial dispersion fixed-bed reactor with nonuniformly active catalyst. Chem. Eng. Sci. 42, 1595-1608, 1987. [Pg.561]

Axial Dispersion Effects In adsorption bed calculations, axial dispersion effects are typically accounted for by the axial diffusionhke term in the bed conservation equations [Eqs. (16-51) and (16-52)]. For nearly linear isotherms (0.5 < R < 1.5), the combined effects of axial dispersion and mass-transfer resistances on the adsorption behavior of packed beds can be expressed approximately in terms of an apparent rate coefficient for use with a fluid-phase driving force (column 1, Table 16-12) ... [Pg.1516]

With a favorable isotherm and a mass-transfer resistance or axial dispersion, a transition approaches a constant pattern, which is an asymptotic shape beyond which the wave will not spread. The wave is said to be self-sharpening. (If a wave is initially broader than the constant pattern, it will sharpen to approach the constant pattern.) Thus, for an initially uniformly loaded oed, the constant pattern gives the maximum breadth of the MTZ. As bed length is increased, the constant pattern will occupy an increasingly smaller fraction of the bed. (Square-root spreading for a linear isotherm gives this same qualitative result.)... [Pg.1524]

The rectangular isotherm has received special attention. For this, many of the constant patterns are developed fuUy at the bed inlet, as shown for external mass transfer [Klotz, Chem. Rev.s., 39, 241 (1946)], pore diffusion [Vermeulen, Adv. Chem. Eng., 2, 147 (1958) Hall et al., Jnd. Eng. Chem. Fundam., 5, 212 (1966)], the linear driving force approximation [Cooper, Jnd. Eng. Chem. Fundam., 4, 308 (1965)], reaction kinetics [Hiester and Vermeulen, Chem. Eng. Progre.s.s, 48, 505 (1952) Bohart and Adams, J. Amei Chem. Soc., 42, 523 (1920)], and axial dispersion [Coppola and LeVan, Chem. Eng. ScL, 38, 991 (1983)]. [Pg.1528]

For axial dispersion in a semi-infinite bed with a linear isotherm, the complete solution has been obtained for a constant flux inlet boundary condition [Lapidiis and Amundson,y. Phy.s. Chem., 56, 984 (1952) Brenner, Chem. Eng. Set., 17, 229 (1962) Coates and Smith, Soc. Petrol. Engrs. J., 4, 73 (1964)]. For large N, the leading term is... [Pg.1529]

Kifietic/lransporl for isothermal Same as Case 4 Pliit -Flow Rtfaclof with Axial Dispersion... [Pg.406]

Kirelic/lranspon for Isothermal Laminar-Flow Reactor with no Axial Dispersion [See Shinohara and Christiansen (I974J for ilie non-isoihermul... [Pg.406]

The axial dispersion plug flow model is used to determine the performanee of a reaetor with non-ideal flow. Consider a steady state reaeting speeies A, under isothermal operation for a system at eonstant density Equation 8-121 reduees to a seeond order differential equation ... [Pg.742]

Adiabatic Reactors. Like isothermal reactors, adiabatic reactors with a flat velocity profile will have no radial gradients in temperature or composition. There are axial gradients, and the axial dispersion model, including its extension to temperature in Section 9.4, can account for axial mixing. As a practical matter, it is difficult to build a small adiabatic reactor. Wall temperatures must be controlled to simulate the adiabatic temperature profile in the reactor, and guard heaters may be needed at the inlet and outlet to avoid losses by radiation. Even so, it is hkely that uncertainties in the temperature profile will mask the relatively small effects of axial dispersion. [Pg.335]

Determine the yield of a second-order reaction in an isothermal tubular reactor governed by the axial dispersion model with Pe = 16 and kt = 2. [Pg.346]

Most biochemical reactors operate with dilute reactants so that they are nearly isothermal. This means that the packed-bed model of Section 9.1 is equivalent to piston flow. The axial dispersion model of Section 9.3 can be applied, but the correction to piston flow is usually small and requires a numerical solution if Michaehs-Menten kinetics are assumed. [Pg.444]

A one-dimensional isothermal plug-flow model is used because the inner diameter of the reactor is 4 mm. Although the apparent gas flow rate is small, axial dispersion can be neglected because the catalj st is closely compacted and the concentration profile is placid. With the assumption of Langmuir adsorption, the reactor model can be formulated as. [Pg.335]

This example models the dynamic behaviour of an non-ideal isothermal tubular reactor in order to predict the variation of concentration, with respect to both axial distance along the reactor and flow time. Non-ideal flow in the reactor is represented by the axial dispersion flow model. The analysis is based on a simple, isothermal first-order reaction. [Pg.410]

Axial dispersion coefficient Constant in equilibrium isotherm... [Pg.581]

With a favorable isotherm and a mass-transfer resistance or axial dispersion, a transition approaches a constant pattern, which is an asymptotic... [Pg.34]

Concentration Profiles In the general case but with a linear isotherm, the concentration profile can be found by numerical inversion of the Laplace-domain solution of Haynes and Sarma [see Lenhoff, J. Chromatogr., 384, 285 (1987)] or by direct numerical solution of the conservation and rate equations. For the special case of no axial dispersion, an explicit time-domain solution is also available in the cyclic steady state for repeated injections of arbitrary duration tE followed by an elution period tE with cycle time tc = tE + tE [Carta, Chem. Eng. Sci, 43, 2877 (1988)]. For the linear driving force mechanism, the solution is... [Pg.44]

In this section, we apply the axial dispersion flow model (or DPF model) of Section 19.4.2 to design or assess the performance of a reactor with nonideal flow. We consider, for example, the effect of axial dispersion on the concentration profile of a species, or its fractional conversion at the reactor outlet. For simplicity, we assume steady-state, isothermal operation for a simple system of constant density reacting according to A - products. [Pg.499]

For a relatively small amount of dispersion, what value of Pei would result in a 10% increase in volume (V) relative to that of a PFR (Vpf) for the same conversion (/a) and throughput (q) Assume the reaction, A - products, is first-order, and isothermal, steady-state, constant-density operation and the reaction number, Mai = at, is 2.5. For this purpose, first show, using equation 20.2-10, for the axial-dispersion model with relatively large Per, that the % increase s 100(V - V pfWpf = 100MAi/Pei. [Pg.511]

DISRE - Isothermal Reactor with Axial Dispersion System... [Pg.335]

DISRET - Non-Isothermal Tubular Reactor with Axial Dispersion 340... [Pg.631]


See other pages where Isothermal axial dispersion is mentioned: [Pg.322]    [Pg.322]    [Pg.286]    [Pg.1516]    [Pg.222]    [Pg.555]    [Pg.163]    [Pg.335]    [Pg.345]    [Pg.698]    [Pg.234]    [Pg.25]    [Pg.25]    [Pg.57]    [Pg.607]   
See also in sourсe #XX -- [ Pg.330 , Pg.334 , Pg.335 ]




SEARCH



Axial dispersion

DISRE - Isothermal Reactor with Axial Dispersion

Isothermal reactor with axial dispersion

© 2024 chempedia.info