Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isocitrate, aconitase reaction

FIGURE 20.7 (a) The aconitase reaction converts citrate to cis-aconitate and then to isocitrate. Aconitase is stereospecific and removes the pro-/ hydrogen from the pro-/ arm of citrate, (b) The active site of aconitase. The iron-sulfur cluster (red) is coordinated by cysteines (yellow) and isocitrate (white). [Pg.648]

Step 2 involves the dehydration of citrate to cir-aconitate followed by the hydration of cis-aconitate to isocitrate. Aconitase catalyzes these reversible reactions. [Pg.346]

Reflect and Apply We have seen one of the four possible isomers of isocitrate, the one produced in the aconitase reaction. Draw the configurations of the other three. [Pg.574]

Citrate is isomerized to isocitrate by aconitase in a two-step process involving aconitate as an intermediate (Figure 20.7). In this reaction, the elements... [Pg.648]

Aconitase catalyzes the citric acid cycle reaction citrate isocitrate... [Pg.672]

In contrast to laboratory reactions, enzyme-catalyzed reactions often give a single enantiomer of a chiral product, even when the substrate is achiral. One step in the citric acid cycle of food metabolism, for instance, is the aconitase-catalyzed addition of water to (Z)-aconitate (usually called ris-aconitate) to give isocitrate. [Pg.312]

Step 2 of Figure 29.12 Isomerization Citrate, a prochiral tertiary alcohol, is next converted into its isomer, (2, 35)-isocitrate, a chiral secondary alcohol. The isomerization occurs in two steps, both of which are catalyzed by the same aconitase enzyme. The initial step is an ElcB dehydration of a /3-hydroxy acid to give cfs-aconitate, the same sort of reaction that occurs in step 9 of glycolysis (Figure 29.7). The second step is a conjugate nucleophilic addition of water to the C=C bond (Section 19.13). The dehydration of citrate takes place specifically on the pro-R arm—the one derived from oxaloacetate—rather than on the pro-S arm derived from acetyl CoA. [Pg.1156]

Citrate is isomerized to isocitrate by the enzyme aconitase (aconitate hydratase) the reaction occurs in two steps dehydration to r-aconitate, some of which remains bound to the enzyme and rehydration to isocitrate. Although citrate is a symmetric molecule, aconitase reacts with citrate asymmetrically, so that the two carbon atoms that are lost in subsequent reactions of the cycle are not those that were added from acetyl-CoA. This asymmetric behavior is due to channeling— transfer of the product of citrate synthase directly onto the active site of aconitase without entering free solution. This provides integration of citric acid cycle activity and the provision of citrate in the cytosol as a source of acetyl-CoA for fatty acid synthesis. The poison fluo-roacetate is toxic because fluoroacetyl-CoA condenses with oxaloacetate to form fluorocitrate, which inhibits aconitase, causing citrate to accumulate. [Pg.130]

Aconitase, an unstable enzyme,4 is concerned with the reversible conversion of cis-aconitate to either citric acid or isocitric acid. It may be noted that the entire system of tricarboxylic cycle enzymes are present in the mitochondria separated from cells, and, furthermore, it has been found that the mitochondrial enzymes differ from the isolated enzymes in that the former require no addition of D.P.N. (co-enzyme I) or T.P.N. (co-enzyme II) for activity. Peters suggests that the citrate accumulation is caused by the competitive reaction of the fluorocitrate with aconitase required for the conversion of citrate to isocitrate. This interference with the tricarboxylic acid... [Pg.155]

Fig. 9. Pathway duplication the methyl citrate cycle and the glyoxylate shunt. A pathway for acetate metabolism in E. coli that uses the glyoxylate shunt is depicted on the right. Part of the methyl citrate cycle, a pathway for propionate metabolism, is depicted on the left. The pathways are analogous furthermore, three of the four steps are catalyzed by homologous enzymes. PrpE (propionyl-CoA synthase) is homologous to AcsA (acetyl-CoA synthase). PrpC (2-methyl-citrate synthase) is homologous to GltA (citrate synthase). PrpB (2-methyl-isocitrate lyase) is homologous to AceA (isocitrate lyase). The third step in the methyl citrate cycle has been suggested to be catalyzed by PrpD the second half of the reaction (the hydration) can be catalyzed by aconitase. Fig. 9. Pathway duplication the methyl citrate cycle and the glyoxylate shunt. A pathway for acetate metabolism in E. coli that uses the glyoxylate shunt is depicted on the right. Part of the methyl citrate cycle, a pathway for propionate metabolism, is depicted on the left. The pathways are analogous furthermore, three of the four steps are catalyzed by homologous enzymes. PrpE (propionyl-CoA synthase) is homologous to AcsA (acetyl-CoA synthase). PrpC (2-methyl-citrate synthase) is homologous to GltA (citrate synthase). PrpB (2-methyl-isocitrate lyase) is homologous to AceA (isocitrate lyase). The third step in the methyl citrate cycle has been suggested to be catalyzed by PrpD the second half of the reaction (the hydration) can be catalyzed by aconitase.
There have been a number of isolated studies of metal-ion catalyzed nucleophilic reactions of other groupings. Particularly interesting is the induced nucleophilic attack on olefins. Hydration is normally very sluggish. Enzymes can speed up such reactions. Aconitase, an iron-containing enzyme, catalyzes the isomerization of citric acid to isocitric acid, through the intermediacy of cis-aconitic acid. A possible mechanism has been suggested based on the following Co(III) model chemistry. Rapid cyclization of the maleate ester produces Ai and AS chelated malate half ester ... [Pg.317]

Aconitase [citrate(isocitrate) hydro-lyase, EC 4.2.1.3] is the second enzyme of the citric acid cycle, which plays a central role in metabolism for all aerobic organisms. This enzyme catalyzes a dehydration-rehydration reaction interconverting citrate and 2R,3S-isocitrate via the allylic intermediate ds-aconitate. [Pg.343]

Enzymes usually function stereospedfically. In chiral substrates, they only accept one of the enantiomers, and the reaction products are usually also sterically uniform. Aconitate hydratase (aconitase) catalyzes the conversion of citric acid into the constitution isomer isocitric acid (see p.l36). Although citric acid is not chiral, aconitase only forms one of the four possible isomeric forms of isocitric acid (2i ,3S-isocitric acid). The intermediate of the reaction, the unsaturated tricarboxylic acid aconitate, only occurs in the cis form in the reaction. The trans form of aconitate is found as a constituent of certain plants. [Pg.8]

Citrate rearranges to isocitrate in a reaction catalyzed by aconitase. [Pg.92]

A somewhat different type of reaction is catalyzed by the iron (II) -containing (12) enzyme aconitase, which brings about the interconversion of citric, isocitric, and aconitic acids by hydration and dehydration. [Pg.44]

Although the equilibrium mixture at pH 7.4 and 25 °C contains less than 10% isocitrate, in the cell the reaction is pulled to the right because isocitrate is rapidly consumed in the next step of the cycle, lowering its steady-state concentration. Aconitase contains an iron-sulfur center (Fig. 16-10), which acts both in the binding of the substrate at the active site and in the catalytic addition or removal of H20. [Pg.609]

One of the simplest biochemical addition reactions is the hydration of carbon dioxide to form carbonic acid, which is released from the zinc-containing carbonic anhydrase (left, Fig. 13-1) as HC03-. Aconitase (center, Fig. 13-4) is shown here removing a water molecule from isocitrate, an intermediate compound in the citric acid cycle. The H20 that is removed will become bonded to an iron atom of the Fe4S4 cluster at the active site as indicated by the black H20. An enolate anion derived from acetyl-CoA adds to the carbonyl group of oxaloacetate to form citrate in the active site of citrate synthase (right, Fig. 13-9) to initiate the citric acid cycle. [Pg.676]

Two consecutive reactions of the citric acid cycle (Fig. 10-6), the dehydration of citrate to form czs-aconi-tate and the rehydration in a different way to form isocitrate (Eq. 13-17), are catalyzed by aconitase (aconi-tate hydratase). Both reactions are completely stereospecific. In the first (Eq. 13-17, step a), the pro-R proton from C-4 (stereochemical numbering) of citrate is removed and in step c isocitrate is formed. Proton addition is to the re face in both cases. [Pg.686]

The enzyme aconitase catalyzes the isomerization of citric acid to isocitric acid via the intermediate cis-aconitic acid (Scheme 46),530 and various attempts have been made to model this reaction.21 The cobalt Ill) complexes derived from methyl maleate (171) and methyl fumarate (172) have been prepared531 to study intramolecular attack by coordinated hydroxide on the alkene. Generation of the hydroxo species of the maleic acid complex leads to rapid cyclization to give the... [Pg.475]

Aconitase is the trivial name for citrate dehydratase cw-aconitate hydratase (EC 4.2.1.3). It catalyzes the reversible isomerization reaction of citrate into isocitrate via the intermediate cA-aconitate (Figure 2). It is a water-soluble, monomeric protein. In eukaryotic cells aconitase is located in the mitochondrial matrix. In prokaryotes the enzyme occurs in the cytoplasma. The pig heart enzyme consists of 754 amino-acid residues, providing a molecular mass of 83 kDa [27], Aconitase from other sources has similar size. The porcine protein is synthesized with a mitochondrial targeting sequence. The mature, functional protein can be (over)expressed in Escherichia coli [28],... [Pg.214]

Answer Anaplerotic reactions replenish intermediates in the citric acid cycle. Net synthesis of a-ketoglutarate from pyruvate occurs by the sequential actions of (1) pyruvate carboxylase (which makes extra molecules of oxaloacetate), (2) pyruvate dehydrogenase, and the citric acid cycle enzymes (3) citrate synthase, (4) aconitase, and (5) isocitrate dehydrogenase ... [Pg.179]

In the reaction with aconitase, one citrate methylene was shown to behave as follows one of its prochiral hydrogens is lost to water, while the other becomes the hydrogen on the a-carbon of isocitrate and is removed to form NADPH by isocitrate dehydrogenase. With the two citrate samples, 118 and 119, the observed result shows that the active methylene cannot be at C-4 (both hydrogens are H) and is, therefore, at C-2. Similarly, with the two citrate samples 120 and 121, the active methylene cannot be at C-2, but must be at C-4. The results are only consistent with the conclusion that the methylene acted on by aconitase was... [Pg.94]

If [2,3-2H2]fumarate is used as substrate for the fumarase reaction in HzO, the malic acid has (5) configuration at C-3, 123 in this case, the proton lost by action of aconitase is H not 2H, and 2H is finally removed by action of isocitrate dehydrogenase. Using normal projection formulae, this sequence is as follows ... [Pg.95]


See other pages where Isocitrate, aconitase reaction is mentioned: [Pg.651]    [Pg.178]    [Pg.91]    [Pg.7]    [Pg.96]    [Pg.205]    [Pg.464]    [Pg.699]    [Pg.372]    [Pg.92]    [Pg.365]    [Pg.371]    [Pg.455]    [Pg.456]    [Pg.343]    [Pg.345]    [Pg.362]    [Pg.136]    [Pg.700]    [Pg.156]    [Pg.294]    [Pg.894]    [Pg.53]    [Pg.92]    [Pg.93]    [Pg.522]   
See also in sourсe #XX -- [ Pg.94 , Pg.95 , Pg.96 , Pg.97 , Pg.114 ]




SEARCH



Aconitases

Isocitral

Isocitrate

Isocitrate, aconitase reaction oxidation

© 2024 chempedia.info