Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron, oxide-supported metal catalysts

Lewandowski M, Sun YN, Qin ZH, Shaikhutdinov S, Freund HJ. Promotional effect of metal encapsulation on reactivity of iron oxide supported Pt catalysts. Appl Catal A. 2011 391 407-10. [Pg.352]

Nitrogen adsorption experiments showed a typical t)q5e I isotherm for activated carbon catalysts. For iron impregnated catalysts the specific surface area decreased fix>m 1088 m /g (0.5 wt% Fe ) to 1020 m /g (5.0 wt% Fe). No agglomerization of metal tin or tin oxide was observed from the SEM image of 5Fe-0.5Sn/AC catalyst (Fig. 1). In Fig. 2 iron oxides on the catalyst surface can be seen from the X-Ray diffractions. The peaks of tin or tin oxide cannot be investigated because the quantity of loaded tin is very small and the dispersion of tin particle is high on the support surface. [Pg.278]

Examples of supports modifying the properties of transition metal oxides have also appeared in the literature. Recent work points to iron oxide phases as important species in Fischer-Tropsch synthesis (3 ). Iron oxide supported on SiO2 (4 ) and TiO ( ) resist reduction under conditions in which bulk iron oxide easily reduces. Thus supported iron oxide catalysts are potentially interesting Fischer-Tropsch catalysts. The extensive studies on ethylene polymerization catalysts suggests that chromium (VI) species exist on a SiOp surface at temperatures above which bulk chromic anhydride (CrOg) decomposes ( ). [Pg.165]

With supported metal catalysts that have to be treated in a reducing gas flow at elevated temperatures to convert the catalytic precursor into the desired metal, it is important to assess the extent of reduction. Often the oxidic phase of the cata-lytically active precursor is stabilized by interaction with the support. It is even possible for a finely divided precursor to react with the support to a compound much more stable than the corresponding metal oxide. An example is cobalt oxide, which can react with alumina to form cobalt aluminate, which is very difficult to reduce to metallic cobalt and alumina. Another example is silica-supported iron oxide. Usually the reduction of iron(III) to iron(II) proceeds readily, because the reduction to iron(II) is hardly thermodynamically limited by the presence of water vapor. Iron(ll), however, reacts rapidly with silica to iron(II) silicate, which is almost impossible to reduce. [Pg.41]

In 2011, Woo and collaborators prepared ORR catalysts from the pyrolysis at 700, 800, and 900 °C of a mixture of iron oxide supported on Vulcan and dicyandiamide (C2H4N4 a dimer of cyanamide) [111]. TEM of the catalysts revealed that at 700 °C metal particles were encapsulated with a carbon layer, while they were mostly in carbon tubes at 900 °C. The total N content was 2.2,3.5, and 6.6 at.% for the catalysts heat treated at 700,800, and 900 °C, respectively. This N content was broken down as 54 % pyridinic and 0 % graphitic nitrogen atoms at 700 °C, while it was 61.4 % pyridinic and 10.7 % graphitic at 900 C. The Fe content was also measured in these catalysts and also for the catalyst iron... [Pg.311]

To assess the suitability of metal cyanide complexes as active precursors for supported catalysts, a series of homo- and heteronuclear cyanide complexes has been precipitated in the presence of alumina, titania, and silica supports. To establish the distribution of the insoluble cyanide complexes on the support, the catalyst precursors were investigated by transmission electron microscopy. Conversion of the cyanide precursors into oxidic or metallic catalysts can be performed by thermal treatments in oxygen, argon, and hydrogen, respectively. Detailed results of the thermal treatment of a copper-iron cyanide precursor on alumina are presented. Oxidation of the cyanide precursors to highly dispersed oxides calls for treatment at relatively low temperatures, viz., about 573 K. The resulting oxide can subsequently be reduced smoothly to the corresponding (bi)metallic supported catalyst. [Pg.931]

Catalysts have often been referred to, but few details have been given. For heterogeneous reactions of the above type, catalysts are mostly manufactured as the metal oxide on a ceramic support and reduced in situ to their active state. (The iron oxide ammonia synthesis catalyst is a major exception, in that it has no support but is simply the oxide with some promoters.) The shape of typical catalysts varies from lumps to pellets to granules, and in addition to being firm... [Pg.150]

Iron-based catalysts are used in both LTFT and HTFT process mode. Precipitated iron catalysts, used in fixed-bed or slurry reactors for the production of waxes, are prepared by precipitation and have a high surface area. A sihca support is commonly used with added alumina to prevent sintering. HTFT catalysts for fluidized bed apphcations must be more resistant to attrition. Fused iron catalysts, prepared by fusion, satisfy this requirement (Olah and Molnar, 2003). For both types of iron-based catalysts, the basicity of the surface is of vital importance. The probability of chain growth increases with alkali promotion in the order Li, Na, K, and Rb (Dry, 2002), as alkalis tend to increase the strength of CO chemisorption and enhance its decomposition to C and O atoms. Due to the high price o Rb, K is used in practice as a promoter for iron catalysts. Copper is also typically added to enhance the reduction of iron oxide to metallic iron during the catalyst pretreatment step (Adesina, 1996). Under steady state FT conditions, the Fe catalyst consists of a mixture of iron carbides and reoxidized Fe304 phase, active for the WGS reaction (Adesina, 1996 Davis, 2003). [Pg.560]

Oxidation of methanol to formaldehyde with vanadium pentoxide catalyst was first patented in 1921 (90), followed in 1933 by a patent for an iron oxide—molybdenum oxide catalyst (91), which is stiU the choice in the 1990s. Catalysts are improved by modification with small amounts of other metal oxides (92), support on inert carriers (93), and methods of preparation (94,95) and activation (96). In 1952, the first commercial plant using an iron—molybdenum oxide catalyst was put into operation (97). It is estimated that 70% of the new formaldehyde installed capacity is the metal oxide process (98). [Pg.494]

Research in catalysts for ammonia manufacture is stiU going on, and though the use of supported metals such as mthenium may be two to three times as active as promoted iron oxide, catalysts 50—100 times more active than promoted iron oxide are required to affect process economics significantly. [Pg.197]

Fig. 1(b) represents the selectivity to styrene as a ftmcfion of time fijr the above catal ts. It is observed that the selectivity to styrene is more than 95% over carbon nauofiber supported iron oxide catalyst compared with about 90% for the oxidized carbon nanofiber. It can be observed that there is an increase in selectivity to styrene and a decrease in selectivity to benzene with time on stream until 40 min. In particrdar, when the carbon nanofiber which has been treated in 4M HCl solution for three days is directly us as support to deposit the iron-precursor, the resulting catalyst shows a significantly lows selectivity to styrene, about 70%, in contrast to more than 95% on the similar catalyst using oxidized carbon nanofiber. The doping of the alkali or alkali metal on Fe/CNF did not improve the steady-state selectivity to styrene, but shortened the time to reach the steady-state selectivity. [Pg.743]

Suppose you prepared an iron oxide catalyst supported on an alumina support. Your aim is to use the catalyst in the metallic form, but you want to keep the iron particles as small as possible, with a degree of reduction of at least 50%. Hence, you need to know the particle size of the iron oxide in the unreduced catalyst, as well as the size of the iron particles and their degree of reduction in the metallic state. Refer to Chapters 4 and 5 to devise a strategy to obtain this information. (Unfortunately for you, it appears that electron microscopy and X-ray diffraction do not provide useful data on the unreduced catalyst.)... [Pg.407]

Other metal oxide catalysts studied for the SCR-NH3 reaction include iron, copper, chromium and manganese oxides supported on various oxides, introduced into zeolite cavities or added to pillared-type clays. Copper catalysts and copper-nickel catalysts, in particular, show some advantages when NO—N02 mixtures are present in the feed and S02 is absent [31b], such as in the case of nitric acid plant tail emissions. The mechanism of NO reduction over copper- and manganese-based catalysts is different from that over vanadia—titania based catalysts. Scheme 1.1 reports the proposed mechanism of SCR-NH3 over Cu-alumina catalysts [31b],... [Pg.13]

TPR of supported bimetallic catalysts often reveals whether the two metals are in contact or not. The TPR pattern of the 1 1 FeRh/SiOi catalyst in Fig. 2.4 shows that the bimetallic combination reduces largely in the same temperature range as the rhodium catalyst does, indicating that rhodium catalyzes the reduction of the less noble iron. This forms evidence that rhodium and iron are well mixed in the fresh catalyst. The reduction mechanism is as follows. As soon as rhodium becomes metallic it causes hydrogen to dissociate atomic hydrogen migrates to iron oxide in contact with metallic rhodium and reduces the oxide instantaneously. [Pg.31]

Numerous studies have been published on catalyst material directly related to rich catalytic combustion for GTapplications [73]. However, most data are available on the catalytic partial oxidation of methane and light paraffins, which has been widely investigated as a novel route to H2 production for chemical and, mainly, energy-related applications (e.g. fuel cells). Two main types of catalysts have been studied and are reviewed below supported nickel, cobalt and iron catalysts and supported noble metal catalysts. [Pg.382]

Pure decarbonylation typically employs noble metal catalysts. Carbon supported palladium, in particular, is highly elfective for furan and CO formation.Typically, alkali carbonates are added as promoters for the palladium catalyst.The decarbonylation reaction can be carried out at reflux conditions in pure furfural (165 °C), which achieves continuous removal of CO and furan from the reactor. However, a continuous flow system at 159-162 °C gave the highest activity of 36 kg furan per gram of palladium with potassium carbonate added as promoter. In oxidative decarbonylation, gaseous furfural and steam is passed over a catalyst at high temperatures (300 00 °C). Typical catalysts are zinc-iron chromite or zinc-manganese chromite catalyst and furfural can be obtained in yields of... [Pg.21]


See other pages where Iron, oxide-supported metal catalysts is mentioned: [Pg.741]    [Pg.518]    [Pg.77]    [Pg.124]    [Pg.244]    [Pg.126]    [Pg.7]    [Pg.453]    [Pg.10]    [Pg.394]    [Pg.1498]    [Pg.265]    [Pg.1497]    [Pg.108]    [Pg.1444]    [Pg.66]    [Pg.660]    [Pg.184]    [Pg.785]    [Pg.262]    [Pg.173]    [Pg.198]    [Pg.154]    [Pg.99]    [Pg.100]    [Pg.335]    [Pg.73]    [Pg.336]    [Pg.141]    [Pg.158]    [Pg.303]    [Pg.214]    [Pg.26]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Catalysts metal oxidation

Catalysts metallic iron

Iron metal

Iron oxide, supported

Iron, catalyst

Metal iron oxides

Metal oxide catalysts

Metal oxide support

Metal oxides catalyst supports

Metal oxides, catalysts oxidation

Oxidation supported metal oxide catalysts

Oxidation supports

Oxide Supported Metallic Catalysts

Oxide supports

Supported Iron

Supported metal catalysts

Supported metallic oxides

© 2024 chempedia.info