Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron ethane

Heal content, 110. 116 change (luring a reaction, 110 of a substance, 109 Heat of combustion of diamond, 122 graphite, 122 hydrazine, 47 hydrogen, 40 methane, 123 Heat of formation, 113 Heat of reaction, 135 between elements, table, 112 oxidation of HC1, 160 oxidation of sulfur dioxide, 161 predicting, 112 Heat of reaction to form ammonia, 112 Br atoms, 290 carbon dioxide, 112 carbon monoxide, 112 Cl atoms, 290 CO + Hi, 110 ethane, 112 F atoms, 290 H atoms, 274 hydrogen chloride, 160 hydrogen iodide, 112 iron(Ill) oxide, 162 Li atoms, 290 Li + Br, 290 Li + F, 290 Na + Cl, 290 NHs products, 114 Na atoms, 290 NO, 112 NOj, 112... [Pg.460]

Substrate reduction by the iron nitrogenase is very similar to that observed with vanadium nitrogenases. Acetylene is a relatively poor substrate, and N2 reduction is accompanied by considerable H2 evolution. Acetylene reduction leads to the production of some ethane as well as ethylene. Beyond this, little has been investigated. Under optimal conditions for N2 reduction, the ratio of N2 reduced to H2 produced was 1 7.5 compared with 1 1 for molybdenum nitrogenase 192). [Pg.209]

For trichloroethene (TCE), the stoichiometric amount of iron and the effect of different preparations determine the outcome of the several competing reactions. Coupling products such as butenes, acetylene and its reduction products ethene and ethane, and products with five or six carbon atoms were formed (Liu et al. 2005). Although a held-scale application successfully lowered the concentration of TCE, there was evidence for the formation of the undesirable di-l,2-dichloroethene and 1-chloroethene (vinyl chloride) in the groundwater (Quinn et al. 2005). [Pg.26]

Song H, ER Carraway (2005) Reduction of chlorinated ethanes by nanosized zero-valent iron kinetics, pathways, and effect of reaction conditions. Environ Sci Technol 39 6237-6245. [Pg.47]

The first reported work on the kinetics of hydrogenolysis reactions of simple hydrocarbons appears to be that of Taylor and associates at Princeton (2-4, 14, 15), primarily on the hydrogenolysis of ethane to methane. The studies were conducted on nickel, cobalt, and iron catalysts. More recently, extensive studies on ethane hydrogenolysis kinetics have been conducted on all the group VIII metals and on certain other metals as well (16,28-83). [Pg.94]

In the direct ammoxidation of propane over Fe-zeolite catalysts the product mixture consisted of propene, acrylonitrile (AN), acetonitrile (AcN), and carbon oxides. Traces of methane, ethane, ethene and HCN were also detected with selectivity not exceeding 3%. The catalytic performances of the investigated catalysts are summarized in the Table 1. It must be noted that catalytic activity of MTW and silicalite matrix without iron (Fe concentration is lower than 50 ppm) was negligible. The propane conversion was below 1.5 % and no nitriles were detected. It is clearly seen from the Table 1 that the activity and selectivity of catalysts are influenced not only by the content of iron, but also by the zeolite framework structure. Typically, the Fe-MTW zeolites exhibit higher selectivity to propene (even at higher propane conversion than in the case of Fe-silicalite) and substantially lower selectivity to nitriles (both acrylonitrile and acetonitrile). The Fe-silicalite catalyst exhibits acrylonitrile selectivity 31.5 %, whereas the Fe-MTW catalysts with Fe concentration 1400 and 18900 ppm exhibit, at similar propane conversion, the AN selectivity 19.2 and 15.2 %, respectively. On the other hand, Fe-MTW zeolites exhibit higher AN/AcN ratio in comparison with Fe-silicalite catalyst (see Table 1). Fe-MTW-11500 catalyst reveals rather rare behavior. The concentration of Fe ions in the sample is comparable to Fe-sil-12900 catalyst, as well as... [Pg.399]

The ethanal was converted to its 2,4-DNP derivative, obtained in 87% yield.) It may also be noted that for this redox reaction, iridium retains the +3 state throughout. The more labile chloride irons to phosphine is replaced... [Pg.166]

PBu3) to eliminate ethylene (in agreement with the enhanced ethylene production in the presence of CO and PBu3) or be further reduced to ethane by an iron hydride or by LAH.— The ethylidene could insert a new CO forming a ketene with three carbons and extend the chain. The importance of coordination of A1H3 to... [Pg.271]

We have delineated viable coordinated ligand reactions and their attendant intermediates for the stoichiometric conversion of CO ligands selectively to the C2 organics ethane, ethylene, methyl (or ethyl) acetate, and acetaldehyde. We now outline results from three lines of research (1) T -Alkoxymethyl iron complexes CpFe(C0)2CH20R (2) are available by reducing coordinated CO on CpFe(C0)3+ (1) [Cp = r -CsHs]. Compounds 2 then form t -alkoxyacetyl complexes via migratory-insertion (i,e. CO... [Pg.276]

In a similar study, Zhang and Wang (1997) studied the reaction of zero-valent iron powder and palladium-coated iron particles with trichloroethylene and PCBs. In the batch scale experiments, 50 mL of 20 mg/L trichloroethylene solution and 1.0 g of iron or palladium-coated iron were placed into a 50 mL vial. The vial was placed on a rotary shaker (30 rpm) at room temperature. Trichloroethylene was completely degraded by palladium/commercial iron powders (<2 h), by nanoscale iron powder (<1.7 h), and nanoscale palladium/iron bimetallic powders (<30 min). Degradation products included ethane, ethylene, propane, propene, butane, butene, and pentane. The investigators concluded that nanoscale iron powder was more reactive than commercial iron powders due to the high specific surface area and less surface area of the iron oxide layer. In addition, air-dried nanoscale iron powder was not effective in the dechlorination process because of the formation of iron oxide. [Pg.1096]

A series of ferrasilsesquioxanes stabilized by phosphine ligands has been prepared and characterized by Baker et al Reactions of the iron(II) precursor FeCl2(dcpe) (dcpe = bis(dicyclohexylphosphino)ethane) with 2 or the monosilylated precursor (c-C5H9)7Si70g(0SiMe3)(0FI)2 (38) afforded the (dcpe)iron(II)-silsesquioxane... [Pg.144]

The preparation of film electrodes Prussian blue films are usually prepared by cycling an electrode in a freshly prepared solution containing iron(III) and hexacyanoferrate(III) ions [70-72]. As substrate, mostly platinum is used, sometimes glassy carbon [73] is used, and very frequently ITO electrodes [74] are used because the latter are very useful for electrochromism studies. Similar procedures using solutions containing metal ions and hexacyanoferrate(III) have been used to deposit cobalt hexacyanoferrate [75] and chromium hexacyanoferrate [76, 77]. Crumbliss et al. reported a plasma deposition of iron species from a plasma containing iron pentacarbonyl and ethane, followed by electrochemical derivatization of the deposited iron sites with the help of hexacyanoferrate solutions [78]. [Pg.716]


See other pages where Iron ethane is mentioned: [Pg.124]    [Pg.124]    [Pg.97]    [Pg.20]    [Pg.195]    [Pg.493]    [Pg.157]    [Pg.238]    [Pg.59]    [Pg.80]    [Pg.97]    [Pg.63]    [Pg.200]    [Pg.98]    [Pg.99]    [Pg.300]    [Pg.260]    [Pg.39]    [Pg.245]    [Pg.307]    [Pg.226]    [Pg.1096]    [Pg.98]    [Pg.434]    [Pg.436]    [Pg.491]    [Pg.495]    [Pg.735]    [Pg.520]    [Pg.879]    [Pg.977]    [Pg.1072]    [Pg.246]    [Pg.460]    [Pg.164]   
See also in sourсe #XX -- [ Pg.1198 , Pg.1199 ]

See also in sourсe #XX -- [ Pg.4 , Pg.1198 , Pg.1199 ]




SEARCH



Ethane, reaction with iron

Iron catalyst ethane)

© 2024 chempedia.info