Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron cyclopropanation

Thus the unsaturated ketones carvone, eucarvone and 1-acetyl-cyclohexane formed the cyclopropyl ketones (6), (7) and (8) while benzalaceto-phenone (9) affords l-benzyl-2-pheny 1-cyclopropane as a mixture of as and irons isomers (10) and (H) 233,234... [Pg.114]

Catalytic, enantioselective cyclopropanation enjoys the unique distinction of being the first example of asymmetric catalysis with a transition metal complex. The landmark 1966 report by Nozaki et al. [1] of decomposition of ethyl diazoacetate 3 with a chiral copper (II) salicylamine complex 1 (Scheme 3.1) in the presence of styrene gave birth to a field of endeavor which still today represents one of the major enterprises in chemistry. In view of the enormous growth in the field of asymmetric catalysis over the past four decades, it is somewhat ironic that significant advances in cyclopropanation have only emerged in the past ten years. [Pg.85]

Cyclopentene-l-dithiocarboxylic acid, 2-amino-meta complexes, 2, 800 Cyclophane chlorophylls, 3, 58 Cyclophane hemes iron complexes, 4,1269 Cyclophosphazenes metal complexes, 2, 81 Cyclopropane carbonylation... [Pg.118]

This procedure illustrates a new three-step reaction sequence for the one-carbon ring expansion of cyclic ketones to the homologous tt,/3-unsaturated ketones. The key step in the sequence is the iron(III) chloride-induced cleavage of the central bond of trimethyl-silyloxycyclopropanes which me obtained by cyclopropanation of trimethylsilyl enol ethers. The procedure for the preparation of 1-trimethylsilyloxycyclohexene from cyclohexanone described in Part A is that of House, Czuba, Gall, and Olmstead. ... [Pg.60]

Woo et al. [54] prepared new chiral tetraaza macrocyclic hgands (48 in Scheme 23) and their corresponding iron(II) complexes and tested them, as well as chiral iron(II) porphyrin complexes such as Fe (D4 -TpAP) 49, in asymmetric cyclopropanation of styrene. [Pg.110]

Interestingly, the activity of the corresponding cobalt catalyst possessing a pincer-type ligand is higher than that of the iron complex. In addition, the cobalt complex also acts as a catalyst in asymmetric mtermolecular cyclopropanations. [Pg.49]

Cyclopropane rings are commonly found in biologically active natural products and therapeutic drug molecules [50-52]. Iron porphyrins are active catalysts for the... [Pg.123]

Iron porphyrins display pronounced substrate preferences for alkene cyclopro-panation with EDA. In general, electron-rich terminal alkenes in conjunction with aromatic moiety or heteroatoms can efficiently undergo cyclopropanation with high catalyst turnover and selectivity. In contrast, 1,2-disubstituted alkenes cannot undergo cyclopropanation with diazoesters. Alkyl alkenes are poor substrates, giving cyclopropanated products in low yields. In both cases, the dimerization product diethyl maleate was obtained in high yield [53]. [Pg.125]

Aryldiazomethane can also be used for iron porphyrin-catalyzed alkene cyclopropanation [55]. For example, the treatment of p-tolyldiazomethane with styrene in the presence of [Fe(TTP)] afforded the corresponding arylcyclopropapane in 79% yield with a high transicis ratio of 14 1 (eq. 1 in Scheme 11). Interestingly, when bulkier mesityldiazomethane was used as carbene source, ds-selectivity was observed (cisitrans = 2.0 1). Additionally, mesityldiazomethane was found to react with frans-p-styrene, the latter was found not to react with EDA or trimethyl-silyldiazomethane under the similar reaction conditions, to give l-mesityl-2-methyl-3-phenylcyclopropane in 35% yield. Trimethylsilyldiazomethane is also an active carbene source for [Fe(TTP)]-catalyzed cyclopropanation of styrene, affording l-phenyl-2-trimethylsilylcyclopropane in 89% yield with transicis ratio of 10 1 (eq. 2 in Scheme 11). [Pg.125]

Interestingly, the cyclopropanation of styrenes with EDA catalyzed by the half sandwich iron complex [CpFe(CO)2(THF)] BF4 afforded cyclopropanes in good yields and with ds-selectivity cisitrans = 80 20) [62]. With phenyldiazomethane as a carbene source, excellent cA-selectivity (92-100%) was achieved (Scheme 15) [63]. [Pg.127]

Hj Dj exchange on, 26 39-43 heteropolyanion-supported, 41 230-231 high MiUer index, 26 12-15,35,36 -H-USY zeoUte, 39 186-187 hydrocarbons adsorption, 38 229-230 reactions of cyclopropane, cyclohexane, and n-heptane, 26 51-53 structural effects, 30 25-26 hydrogen adsorption on, 23 15 hydrogenation, 30 281-282 olefins, in ethanol, 30 352-353 in hydrogenation reaction, 33 101 -iron alloys, 26 75 isomerization, 30 2-3 isotope, NMR properties, 33 213,274 kinetic oscillations, 37 220-228 ball models of densely packed surfaces, 37 221-222... [Pg.178]

Scheme 108 Cathodic cyclopropanation with an iron-methylene complex. Scheme 108 Cathodic cyclopropanation with an iron-methylene complex.
The molybdenum complex 1, a typical high-valent Schrock-type carbene, efficiently catalyzes the self-metathesis of styrene. On the other hand, the cationic iron complex 3 does not induce metathesis but stoichiometrically cyclopropanates styrene. The tungsten complex 2, again a Fischer-type carbene complex, mediates... [Pg.5]

Acid-catalyzed dealkoxylation is particularly suitable for the preparation of highly reactive, cationic iron(IV) carbene complexes, which can be used for the cyclopropanation of alkenes [438] (Figure 3.11). Several reagents can be used to catalyze alkoxide abstraction these include tetrafluoroboric acid [457-459], trifluoroacetic acid [443,460], gaseous hydrogen chloride [452,461], trityl salts [434], or trimethylsilyl triflate [24,104,434,441,442,460], In the case of oxidizing acids (e.g. trityl salts) hydride abstraction can compete efficiently with alkoxide abstraction and lead to the formation of alkoxycarbene complexes [178,462] (see Section 2.1.7). [Pg.85]

Because electrophilic carbene complexes can cyclopropanate alkenes under mild reaction conditions (Table 3.1) [438,618-620], these complexes can serve as stoichiometric reagents for the cyclopropanation of organic compounds. Thoroughly investigated carbene complexes for this purpose are neutral complexes of the type (C0)5M=CR2 (M Cr, Mo, W) and cationic iron(IV) carbene complexes. The mechanism of cyclopropanation by electrophilic carbene complexes has been discussed in Section 1.3. [Pg.106]

Experimental Procedure 3.2.1. Cyclopropanation with an Iron Carbene Conqjlex 1,1-Diphenylcyclopropane [468]... [Pg.106]

Fig. 3.33. Stoichiometric, intramolecular cyclopropanations with iron(IV) carbene complexes [477,624],... Fig. 3.33. Stoichiometric, intramolecular cyclopropanations with iron(IV) carbene complexes [477,624],...
Enantioselective cyclopropanations using enantiomerically pure tungsten [54], iron [458,483,630], and ruthenium [581] carbene complexes have also been at-... [Pg.109]

Table 3.2. Cyclopropanation with stoichiometric amounts of cationic iron and nickel carbene complexes. Table 3.2. Cyclopropanation with stoichiometric amounts of cationic iron and nickel carbene complexes.
Hence, cationic iron carbene complexes such as Cp(CO)2Fe =CHCHZR, in which Z is an electron-withdrawing group, might also be suitable for intermolecular cyclopropanation or C-H insertion reactions. The use of such carbene complexes in organic synthesis has not yet been thoroughly investigated, but could fruitfully supplement the chemistry of acceptor-substituted carbenes. [Pg.125]

Sarel and co-workers have examined some reactions of alkynylcyclopropanes with iron carbonyl compounds [1]. Treatment of cyclopropylacetylene (5) with iron pentacarbonyl under photolytic conditions gives, after cerium(IV) oxidation, isomeric quinones 6 and 7, derived from two molecules of 5 and two carbonyls with both cyclopropane rings intact [6]. Furthermore, the photoreaction of dicyclopropylacetylene (8) with iron carbonyl gives some ten different products depending on the reagents and the reaction conditions, and some of them have the cyclopentenone skeleton formed by the opening of cyclopropane ring coupled with carbonyl insertion [7] (Scheme 2). [Pg.70]

A diene system with unsymmetrical 1,4-disubstitution is converted to the iron carbonyl complex 1 which is resolved into its enantiomers. The aldehyde function is conformationally locked in the transoid position and is diastereofacially shielded from the bottom face. Nucleophiles attack from the top face with high selectivity. Alternatively, chain elongation leads to the triene 2 which is reacted with diazomethane. Cerium(IV) oxidation removes the metal and furnishes the substituted cyclopropane 3. [Pg.132]

Ethylidenation. Flclquist et al. have extended the cyclopropanation of olefins with an iron methylene complex (9, 143) to ethylidenation of olefins with the iron cthylidcnc complex 1. Since the sulfide precursor (2) is more stable, the reagent is generated in the presence of the olefin. The reagent gives methyl-substituted cyclo-... [Pg.128]

Chiral cyclopropanes. Carrie el al.b l have developed a highly enantioselective synthesis of cyclopropanes from the aldehyde 2, in which the butadiene group is protected as the iron tricarhonyl complex. The complex (2) is resolved by the method of Kelly and Van Rheenan (5, 289-290), and the two optical isomers arc then converted separately into a cyclopropanealdehyde (5a and 5b) as formulated. A sulfur ylide such as (CH3)2S=CHCOOCH3 can be used in place of diazomethane for cyclopropanation. Optical yields are > 90%,... [Pg.223]

CYCLOPROPANES Iron carbonyl. Molybdenum carbonyl. Tetra-u.3-car-bony ldodecacarbonylhcxarhodium. [Pg.473]

The metal-catalysed hydrogenation of cyclopropane has been extensively studied. Although the reaction was first reported in 1907 [242], it was not until some 50 years later that the first kinetic studies were reported by Bond et al. [26,243—245] who used pumice-supported nickel, rhodium, palladium, iridium and platinum, by Hayes and Taylor [246] who used K20-promoted iron catalysts, and by Benson and Kwan [247] who used nickel on silica—alumina. From these studies, it was concluded that the behaviour of cyclopropane was intermediate between that of alkenes and alkanes. With iron and nickel catalysts, the initial rate law is... [Pg.100]


See other pages where Iron cyclopropanation is mentioned: [Pg.256]    [Pg.2319]    [Pg.2318]    [Pg.256]    [Pg.2319]    [Pg.2318]    [Pg.61]    [Pg.261]    [Pg.263]    [Pg.117]    [Pg.124]    [Pg.124]    [Pg.126]    [Pg.126]    [Pg.136]    [Pg.63]    [Pg.645]    [Pg.345]    [Pg.106]    [Pg.106]    [Pg.109]    [Pg.111]    [Pg.112]    [Pg.196]    [Pg.101]   
See also in sourсe #XX -- [ Pg.6 , Pg.106 , Pg.109 , Pg.110 , Pg.111 , Pg.115 , Pg.116 , Pg.118 ]




SEARCH



Cyclopropane iron carbene

Cyclopropane, silyloxycleavage iron chloride

Iron complexes, cyclopentadienyl carbene cyclopropanation

Iron-catalyzed Cyclopropane Formation

© 2024 chempedia.info