Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iridium activation

Iridium. Activation parameters have been determined for the base hydrolysis of [Ir(NH3)sX] +, where X = Cl, Br, or NO3 (Table 17). Base-hydrolysis... [Pg.225]

The impregnation is performed generally from an aqueous solution of known concentration of the metal precursor. The procedure is to immerse overnight the coated monoliths into the precursor solution under mechanical agitation. The excess of the solution is then evaporated. When the precursor solution is completely evaporated, the impregnated monoliths are carefully dried before thermal treatment. This is carried out in a lab-made quartz reactor adapted to the size of the monolithic catalysts (Figure 8-c and d). For platinum, rhodium and iridium active phases, this treatment corresponds to a reduction under hydrogen flow diluted in helium. [Pg.41]

Figure 4. TEM image of iridium active phase deposited on cordierite. Figure 4. TEM image of iridium active phase deposited on cordierite.
The physical properties of the Selenium also offer big advantages with respect to radiation shielding and beam collimation. Within the comparison of radiation isodose areas the required area-radius for a survey of 40pSv/h result in a shut off area that is for Selenium only half the size as for iridium. Sources of similar activity and collimators of same absorbtion value (95%) have been used to obtain values as mentioned in Table 3 below. [Pg.425]

The platinum-group metals (PGMs), which consist of six elements in Groups 8— 10 (VIII) of the Periodic Table, are often found collectively in nature. They are mthenium, Ru rhodium, Rh and palladium, Pd, atomic numbers 44 to 46, and osmium. Os indium, Ir and platinum, Pt, atomic numbers 76 to 78. Corresponding members of each triad have similar properties, eg, palladium and platinum are both ductile metals and form active catalysts. Rhodium and iridium are both characterized by resistance to oxidation and chemical attack (see Platinum-GROUP metals, compounds). [Pg.162]

The most common oxidation states, corresponding electronic configurations, and coordination geometries of iridium are +1 (t5 ) usually square plane although some five-coordinate complexes are known, and +3 (t7 ) and +4 (t5 ), both octahedral. Compounds ia every oxidation state between —1 and +6 (<5 ) are known. Iridium compounds are used primarily to model more active rhodium catalysts. [Pg.181]

Two classes of metals have been examined for potential use as catalytic materials for automobile exhaust control. These consist of some of the transitional base metal series, for instance, cobalt, copper, chromium, nickel, manganese, and vanadium and the precious metal series consisting of platinum [7440-06-4], Pt palladium [7440-05-3], Pd rhodium [7440-16-6], Rh iridium, [7439-88-5], Ir and mthenium [7440-18-8], Ru. Specific catalyst activities are shown in Table 3. [Pg.487]

Kinetic mles of oxidation of MDASA and TPASA by periodate ions in the weak-acidic medium at the presence of mthenium (VI), iridium (IV), rhodium (III) and their mixtures are investigated by spectrophotometric method. The influence of high temperature treatment with mineral acids of catalysts, concentration of reactants, interfering ions, temperature and ionic strength of solutions on the rate of reactions was investigated. Optimal conditions of indicator reactions, rate constants and energy of activation for arylamine oxidation reactions at the presence of individual catalysts are determined. [Pg.37]

IV-Methylpyrrole with (Cp IrH3)2 and 3,3-dimethyl-1-butene gives a couple of unique organometallic products, 86 and 87 (990M134). In 86, the C—H bond in position 2 is activated and a rare tiVC) ti (C=C) coordination mode is realized. Species 87 is a zwitterionic compound containing a triple bond between the iridium atoms. [Pg.132]

Rapoport s findings have been confirmed in the authors laboratory where the actions of carbon-supported catalysts (5% metal) derived from ruthenium, rhodium, palladium, osmium, iridium, and platinum, on pyridine, have been examined. At atmospheric pressure, at the boiling point of pyridine, and at a pyridine-to-catalyst ratio of 8 1, only palladium was active in bringing about the formation of 2,2 -bipyridine. It w as also found that different preparations of palladium-on-carbon varied widely in efficiency (yield 0.05-0.39 gm of 2,2 -bipyridine per gram of catalyst), but the factors responsible for this variation are not knowm. Palladium-on-alumina was found to be inferior to the carbon-supported preparations and gave only traces of bipyridine,... [Pg.181]

Anilines have been reduced successfully over a variety of supported and unsupported metals, including palladium, platinum, rhodium, ruthenium, iridium, (54), cobalt, and nickel. Base metals require high temperatures and pressures (7d), whereas noble metals can be used under much milder conditions. Currently, preferred catalysts in both laboratory or industrial practice are rhodium at lower pressures and ruthenium at higher pressures, for both display high activity and relatively little tendency toward either coupling or hydrogenolysis,... [Pg.123]

Rhodium(III) hydroxide is an ill-defined compound Rh(0H)3.nH20 (n 3) obtained as a yellow precipitate by careful addition of alkali to Na3RhCl6-Addition of imidazole solution to suitable aqua ions leads to the precipitation of active rhodium(III) hydroxides formulated as Rh(0H)3(H20)3, Rh2(/x-0H)2(0H)4(H20)4 and Rh3(/z-0H)4(0H)5(H20)5 [31]. Hydrated iridium(III) hydroxide is obtained as a yellow precipitate from Ir3+ (aq.) at pH 8. [Pg.86]

Catalysts. The methanation of CO and C02 is catalyzed by metals of Group VIII, by molybdenum (Group VI), and by silver (Group I). These catalysts were identified by Fischer, Tropsch, and Dilthey (18) who studied the methanation properties of various metals at temperatures up to 800°C. They found that methanation activity varied with the metal as follows ruthenium > iridium > rhodium > nickel > cobalt > osmium > platinum > iron > molybdenum > palladium > silver. [Pg.23]

The most successful class of active ingredient for both oxidation and reduction is that of the noble metals silver, gold, ruthenium, rhodium, palladium, osmium, iridium, and platinum. Platinum and palladium readily oxidize carbon monoxide, all the hydrocarbons except methane, and the partially oxygenated organic compounds such as aldehydes and alcohols. Under reducing conditions, platinum can convert NO to N2 and to NH3. Platinum and palladium are used in small quantities as promoters for less active base metal oxide catalysts. Platinum is also a candidate for simultaneous oxidation and reduction when the oxidant/re-ductant ratio is within 1% of stoichiometry. The other four elements of the platinum family are in short supply. Ruthenium produces the least NH3 concentration in NO reduction in comparison with other catalysts, but it forms volatile toxic oxides. [Pg.79]

A (pentamethylcyclopentadienyl)iridium chelating guanidinate complex has been conveniently prepared by treatment of [Cp IrCl2]2 with N,N, N"-th-p-tolylguanidine and base in THF at room temperature followed by recrystallization of the green product from toluene and pentane (Scheme 154). Insertion reactions of the product with heterocumulenes (diaryl carbodiimides, aryl isocyanates) have been investigated. It was found that the complex serves as highly active catalyst for the metathesis of diaryl carbodiimides with each other and for the more difficult metathesis of diaryl carbodiimides with aryl isocyanates (cf. Section V.C). ... [Pg.285]

Much research has been carried out into direct amination of aromatic substrates, typified by the direct conversion of benzene to aniline using ammonia and a catalyst. Although there have been many patented routes conversions, are normally low, making them uneconomic. Modem catalysts based on rhodium and iridium, together with nickel oxide (which becomes reduced), have proved more active,and such is the research activity in this area that it is only a matter of time before such processes become widely used. [Pg.278]

The catalytic lifetime was studied by reusing the aqueous phase for three successive hydrogenation runs of toluene, anisole and cresol. Similar turnover activities were observed during the successive runs. These results show the good stability of the catalytically active iridium suspension as previously described with rhodium nanoparticles. [Pg.273]


See other pages where Iridium activation is mentioned: [Pg.450]    [Pg.756]    [Pg.450]    [Pg.756]    [Pg.167]    [Pg.221]    [Pg.478]    [Pg.133]    [Pg.453]    [Pg.176]    [Pg.182]    [Pg.469]    [Pg.69]    [Pg.662]    [Pg.28]    [Pg.29]    [Pg.185]    [Pg.132]    [Pg.211]    [Pg.213]    [Pg.1250]    [Pg.121]    [Pg.337]    [Pg.92]    [Pg.53]    [Pg.124]    [Pg.295]    [Pg.155]    [Pg.223]    [Pg.68]    [Pg.357]    [Pg.321]    [Pg.67]   


SEARCH



Catalytic Activity of Cp Iridium Complexes in Hydrogen Transfer Reactions

Hydrogen activating iridium

Iridium -catalyzed heterocyclization activation

Iridium catalytic activity

Iridium complexes carbon bond activation reactions

Iridium complexes carbon-hydrogen activation reactions

Iridium hydrogenation activation energy

Iridium isomerization activity

Iridium species,catalytic activity

Iridium synthesis activity

© 2024 chempedia.info