Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic used with supercritical

There are several appealing factors for the use of micellar supercritical phases in chromatography. The peak efficiencies obtained in SFC are higher than in LC because the solute diffusion coefficients are higher in supercritical fluids than in liquids. In SFC, mass transfers are enhanced by the combination of high diffiision coefficients and low viscosities. This could compensate for the low efficiency induced by micelles. The polar aqueous core of the reverse micelles should allow the separation of hydrophilic or even ionic solutes with supercritical fluids. These polar compounds are difficult to analyze in SFC [10]. [Pg.474]

When ionic liquids are used as replacements for organic solvents in processes with nonvolatile products, downstream processing may become complicated. This may apply to many biotransformations in which the better selectivity of the biocatalyst is used to transform more complex molecules. In such cases, product isolation can be achieved by, for example, extraction with supercritical CO2 [50]. Recently, membrane processes such as pervaporation and nanofiltration have been used. The use of pervaporation for less volatile compounds such as phenylethanol has been reported by Crespo and co-workers [51]. We have developed a separation process based on nanofiltration [52, 53] which is especially well suited for isolation of nonvolatile compounds such as carbohydrates or charged compounds. It may also be used for easy recovery and/or purification of ionic liquids. [Pg.345]

Biphasic systems consisting of ionic liquids and supercritical CO2 showed dramatic enhancement in the operational stability of both free and immobilized Candida antarctica lipase B (CALB) in the catalyzed kinetic resolution of rac- -phenylethanol with vinyl propionate at 10 MPa and temperatures between 120 and 150°C (Scheme 30) 275). Hydrophobic ionic liquids, [EMIM]Tf2N or [BMIM]Tf2N, were shown to be essential for the stability of the enzyme in the biotransformation. Notwithstanding the extreme conditions, both the free and isolated enzymes were able specifically to catalyze the synthesis of (J )-l-phenylethyl propionate. The maximum enantiomeric excess needed for satisfactory product purity (ee >99.9%) was maintained. The (S)-l-phenylethanol reactant was not esterified. The authors suggested that the ionic liquids provide protection against enzyme denaturation by CO2 and heat. When the free enzyme was used, [EMIM]Tf2N appeared to be the best ionic liquid to protect the enzyme, which... [Pg.224]

The commonest solvent for TPAP in organic oxidations is CH Clj (DCM), normally in conjunction with 4 A powdered molecular sieves (PMS) to remove water formed during the oxidation. Addition of CH3CN, as in many Ru-catalysed oxidations, makes reactions with TPAP/NMO more effective [59], and occasionally CH3CN is used as the only solvent [159]. Ionic liquids, e.g. [emim](PF )/PMS [479] and [bmim](BF )/PMS [480] have been used with TPAP/NMO. It has also been used in supercritical CO [457]. [Pg.33]

Recently, applications of lion-aqueous solutions in the field of modern electrochemical technologies are increasing. Books [1] and review articles [2] that deal with the technological aspects of non-aqueous electrochemistry have appeared. In this chapter, examples of such applications of non-aqueous solutions are outlined. In the last section, the electrochemical use of supercritical fluids and ionic liquids as environmentally benign media is also discussed. [Pg.313]

Apart from Section 12.7, which deals with supercritical fluids and room-temperature ionic liquids, only molecular liquid solvents are considered in this book. Thus, the term solvents means molecular liquid solvents. Water is abundant in nature and has many excellent solvent properties. If water is appropriate for a given purpose, it should be used without hesitation. If water is not appropriate, however, some other solvent must be employed. Solvents other than water are generally called non-aqueous solvents. Non-aqueous solvents are often mixed with water or some other non-aqueous solvents, in order to obtain desirable solvent properties. These mixtures of solvents are called mixed solvents. [Pg.356]

An efficient and convenient methodology for the aerobic oxidation of alcohols catalysed by sol-gel trapped perruthenate and promoted by an encapsulated ionic liquid in supercritical carbon dioxide solution has been reported. The reaction is highly selective and useful for substrates otherwise difficult to oxidize.263 A four-component system consisting of acetamido-TEMPO-Cu(C104)2-TMDP-DABCO has been developed for aerobic alcohol oxidation at room temperature. The catalytic system shows excellent selectivity towards the oxidation of benzylic and allylic alcohols and is not deactivated by heteroatom-containing (S, N) compounds. The use of DMSO as the reaction medium allows the catalysts to be recycled and reused for three runs with no significant loss of catalytic activity.264... [Pg.122]

Process intensification can be considered to be the use of measures to increase the volume-specific rates of reaction, heat transfer, and mass transfer and thus to enable the chemical system or catalyst to realize its full potential (2). Catalysis itself is an example of process intensification in its broadest sense. The use of special reaction media, such as ionic liquids or supercritical fluids, high-density energy sources, such as microwaves or ultrasonics, the exploitation of centrifugal fields, the use of microstructured reactors with very high specific surface areas, and the periodic reactor operation all fall under this definition of process intensification, and the list given is by no means exhaustive. [Pg.388]

Different conditions (including additives and solvent) for the reaction have been reported,often focusing on the palladium catalyst itself," or the ligand." Catalysts have been developed for deactivated aryl chlorides," and nickel catalysts have been used." Modifications to the basic procedure include tethering the aryl triflate or the boronic acid to a polymer, allowing a polymer-supported Suzuki reaction. Polymer-bound palladium complexes have also been used." " The reaction has been done neat on alumina," and on alumina with microwave irradiation." Suzuki coupling has also been done in ionic liquids," in supercritical... [Pg.900]

It is noted that the Diels-Alder reaction has been done with supercritical and with supercritical water as solvents. Diels-Alder reactions on solid supports have also been reported, and zeolites have been used in conjunction with catalytic agents. ° Alumina has been used to promote Diels-Alder reactions. ° Diels-Alder reactions can be done in ionic liquids,including asymmetric Diels-Alder reactions. ... [Pg.1199]

Membrane technology is a recent development to separate (or concentrate) water-soluble catalysts (mainly hydroformylation catalysts) [147, 149], although a prior art is known [194, 195]. There are proposals for the use of immobilized or re-immobilized aqueous phases for large-scale processes (cf. Ref. [222] and Section 3.1.1.6). Carbon dioxide as a solvent for biphasic hydroformylations has been described by Rathke and Klinger [184], although the use of CO2 for hydroformylation purposes was described earlier [185]. For the use of supercritical CO2 cf. Section 3.1.13 with non-aqueous ionic liquids cf. Section 3.1.1.2.2. Investigations with supercritical water are in an early state (e. g., Ref. [223]). [Pg.611]

In principle many other solvent combinations could be used in biphasic chemistry although the main driving force in this area is to provide environmental benefits. For example, ionic liquids have been combined with supercritical solvents for the hydroformylation of 1-octene.30 Since ionic liquids are have no vapor pressure and are essentially insoluble in supercritical C02, the product can be extracted from the reaction using C02 virtually uncontaminated by the rhodium catalyst. [Pg.694]

It must be also noted that supported ionic liquid phase (SILP) catalysis can also be successfully combined with supercritical fluids. Cole-Hamilton et al. [127] have reported recently high activity (rates up to 800 h ), stable performances (>40 h) and minimum rhodium leaching (0.5 ppm) in the hydroformylation of 1-octene using a system that involves flowing the substrate, reacting gases and products dissolved in... [Pg.98]


See other pages where Ionic used with supercritical is mentioned: [Pg.170]    [Pg.248]    [Pg.344]    [Pg.322]    [Pg.518]    [Pg.156]    [Pg.135]    [Pg.1611]    [Pg.102]    [Pg.261]    [Pg.56]    [Pg.4]    [Pg.578]    [Pg.6]    [Pg.864]    [Pg.679]    [Pg.89]    [Pg.272]    [Pg.23]    [Pg.47]    [Pg.102]    [Pg.60]    [Pg.272]    [Pg.164]    [Pg.873]    [Pg.284]    [Pg.311]    [Pg.314]    [Pg.28]    [Pg.12]    [Pg.16]    [Pg.234]    [Pg.561]    [Pg.34]    [Pg.190]   
See also in sourсe #XX -- [ Pg.2 , Pg.283 , Pg.284 ]




SEARCH



Supercritical used with ionic liquids

© 2024 chempedia.info