Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic molecular structure

Several methods of quantitative description of molecular structure based on the concepts of valence bond theory have been developed. These methods employ orbitals similar to localized valence bond orbitals, but permitting modest delocalization. These orbitals allow many fewer structures to be considered and remove the need for incorporating many ionic structures, in agreement with chemical intuition. To date, these methods have not been as widely applied in organic chemistry as MO calculations. They have, however, been successfully applied to fundamental structural issues. For example, successful quantitative treatments of the structure and energy of benzene and its heterocyclic analogs have been developed. It remains to be seen whether computations based on DFT and modem valence bond theory will come to rival the widely used MO programs in analysis and interpretation of stmcture and reactivity. [Pg.65]

The description of electronic distribution and molecular structure requires quantum mechanics, for which there is no substitute. Solution of the time-independent Schrodinger equation, Hip = Eip, is a prerequisite for the description of the electronic distribution within a molecule or ion. In modern computational chemistry, there are numerous approaches that lend themselves to a reasonable description of ionic liquids. An outline of these approaches is given in Scheme 4.2-1 [1] ... [Pg.152]

Figure 4.2-1 shows the calculated ab initio molecular structure of the ionic liquid [BMIM][PFg] (l-butyl-3-methylimidazolium hexafluorophosphate). [Pg.154]

An unusual example involves two complexes of formula Au(S2CNBu2)-(S2C2(CN)2) one has a molecular structure, the other is ionic [Au(S2CNBu2)2]+[Au[S2C2(CN)2]2]- [133],... [Pg.305]

See O. Redlich and G. C. Hood, Ionic Interaction. Dissociation, and Molecular Structure",... [Pg.323]

In the case of ionic adsorbates, the variation in WS50is normally unable to provide a clue to the molecular structure of the solvent since free charge contributions outweigh dipolar effects. In this case UHV experiments are able to give a much better resolved molecular picture of the situation. The interface is synthesized by adsorbing ions first and solvent molecules afterward. The variation of work function thus provides evidence for the effect of the two components separately and it is possible to see the different orientation of water molecules around an adsorbed ion.58,86,87 Examples are provided in Fig. 6. [Pg.25]

Surfactants have a unique long-chain molecular structure composed of a hydrophilic head and hydrophobic tail. Based on the nature of the hydrophilic part surfactants are generally categorized as anionic, non-ionic, cationic, and zwitter-ionic. They all have a natural tendency to adsorb at surfaces and interfaces when added in low concentration in water. Surfactant absorption/desorption at the vapor-liquid interface alters the surface tension, which decreases continually with increasing concentrations until the critical micelle concentration (CMC), at which micelles (colloid-sized clusters or aggregates of monomers) start to form is reached (Manglik et al. 2001 Hetsroni et al. 2003c). [Pg.65]

The ionic strength dependence of intrinsic viscosity is function of molecular structure and protein folding, ft is well known that the conformational and rheological properties of charged biopolymer solutions are dependent not only upon electrostatic interactions between macromolecules but also upon interactions between biopolymer chains and mobile ions. Due electrostatic interactions the specific viscosity of extremely dilute solutions seems to increase infinitely with decreasing ionic concentration. Variations of the intrinsic viscosity of a charged polyampholite with ionic strength have problems of characterization. [Pg.102]

It should be clear by now that inorganic solids (which consist of atoms bound together by both covalent and ionic forces) do not react by either changing the bonding within a molecular structure or by reacting one-on-one in a mobile phase such as a liquid, as do orgeuiic compounds. Solids can only react at the interfiace of another solid, or in the case of a liquid-solid reaction, react with the liquid molecule at the solid interface. [Pg.129]

The magnitude of the copigmentation is influenced by pH value, pigment and copigment concentrations, chemical structure of anthocyanin, temperature, and ionic strength of the medium. As to the effect of the solvent, the important issue is the hydrogen-bonded molecular structure of the liquid water, not the polarity of the medium. ... [Pg.265]

Figure 5.3 Metal polyacrylate molecular structures (a) purely ionic, (b) bridging bidentate, (c) chelating bidentate, (d) asymmetric unidentate, (e) chelate bidentate. Figure 5.3 Metal polyacrylate molecular structures (a) purely ionic, (b) bridging bidentate, (c) chelating bidentate, (d) asymmetric unidentate, (e) chelate bidentate.
Marcos, M., Ros, M.B., Serrano, J.L., Sola, M.A., Oro, L.A. and Barbera, J. (1990) Liquid-crystal behavior in ionic complexes of silver(I) molecular structure-mesogenic activity relationship. Chemistry of Materials, 2, 748-758. [Pg.394]

Nihonyanagi, S., Ye, S. and Uosaki, K. (2001) Sum frequency generation study on the molecular structures at the interfaces between quartz modified with amino-terminated self-assemhled monolayer and electrolyte solutions of various pH and ionic strength. Electrochim. Acta, 46, 3057—3061. [Pg.98]

Surfactants employed for w/o-ME formation, listed in Table 1, are more lipophilic than those employed in aqueous systems, e.g., for micelles or oil-in-water emulsions, having a hydrophilic-lipophilic balance (HLB) value of around 8-11 [4-40]. The most commonly employed surfactant for w/o-ME formation is Aerosol-OT, or AOT [sodium bis(2-ethylhexyl) sulfosuccinate], containing an anionic sulfonate headgroup and two hydrocarbon tails. Common cationic surfactants, such as cetyl trimethyl ammonium bromide (CTAB) and trioctylmethyl ammonium bromide (TOMAC), have also fulfilled this purpose however, cosurfactants (e.g., fatty alcohols, such as 1-butanol or 1-octanol) must be added for a monophasic w/o-ME (Winsor IV) system to occur. Nonionic and mixed ionic-nonionic surfactant systems have received a great deal of attention recently because they are more biocompatible and they promote less inactivation of biomolecules compared to ionic surfactants. Surfactants with two or more hydrophobic tail groups of different lengths frequently form w/o-MEs more readily than one-tailed surfactants without the requirement of cosurfactant, perhaps because of their wedge-shaped molecular structure [17,41]. [Pg.472]

Gillespie, R.J. Robinson, E.A. (1998). Molecular geometry of "ionic" molecules A ligand close packing model. Advances in Molecular Structure and Resonance, 4, 1-41. [Pg.298]

Robinson, E.A., Johnson, S.A., Tang, T.-H., Gillespie, R.J. (1997). Reinterpretation of the lengths of bonds to fluorine in terms of an almost ionic model. Inorganic Chemistry, 36, 3022-3030. Schinder, H.L. Becke, A.D. (2000). Chemical contents of the kinetic energy density. Journal of Molecular Structure (THEOCHEM), 527, 51-61. [Pg.298]

Data on molecular structure of bromonium ions are sometimes extrapolated from that of the tribromide-adamantylideneadamantane bromonium ion pair [6] (Slebocka-Tilk et ai, 1985), the only stable ionic bromination intermediate that can be isolated and whose crystal structure has been determined. Since the first observation by Strating et al. (1969), it has been established that bromine addition to adamantylideneadamantane [5] in... [Pg.223]

Emission spectra of radical cations are obtained by vacuum UV ionization and subsequent laser excitation in noble-gas matrices (see below), or by electron-impact ionization of a beam of neutral parent molecules at energies above the first ionic excited state. After internal conversion to the first excited state, emission may compete more or less successfully with radiationless deactivation. If the experiment is carried out on a supersonic molecular beam one obtains highly resolved emission spectra which, in the case of small molecules, may contain sufficient information to allow a determination of the molecular structure. [Pg.231]


See other pages where Ionic molecular structure is mentioned: [Pg.185]    [Pg.185]    [Pg.894]    [Pg.96]    [Pg.558]    [Pg.560]    [Pg.51]    [Pg.176]    [Pg.308]    [Pg.426]    [Pg.457]    [Pg.6]    [Pg.377]    [Pg.405]    [Pg.382]    [Pg.25]    [Pg.87]    [Pg.631]    [Pg.128]    [Pg.143]    [Pg.733]    [Pg.120]    [Pg.563]    [Pg.215]    [Pg.83]    [Pg.43]    [Pg.240]    [Pg.20]    [Pg.76]    [Pg.137]    [Pg.224]    [Pg.47]    [Pg.9]   
See also in sourсe #XX -- [ Pg.175 ]




SEARCH



Ionic structure

Molecular ionic

© 2024 chempedia.info