Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic liquids constant

To evaluate the quality of the electrochemical coatings obtained from choline chloride based ionic liquids, constant current electrolyses were carried out under stationary conditions and in open air (the electrolyte has been in contact with atmospheric air and humidity). Different ionic liquids systems have been involved, as shown in Table 3. A two-electrode configuration has been employed, using various metallic substrates, respectively of Cu, A1 and Mg as metallic substrates, of 70x35 mm sizes, with a constant geometrical area of 24.5 cm2. Table 4 briefly presents the surface preparation of the metallic electrode before electrodeposition, as well as the electrolysis conditions. [Pg.276]

The viscosity of a fluid arises from the internal friction of the fluid, and it manifests itself externally as the resistance of the fluid to flow. With respect to viscosity there are two broad classes of fluids Newtonian and non-Newtonian. Newtonian fluids have a constant viscosity regardless of strain rate. Low-molecular-weight pure liquids are examples of Newtonian fluids. Non-Newtonian fluids do not have a constant viscosity and will either thicken or thin when strain is applied. Polymers, colloidal suspensions, and emulsions are examples of non-Newtonian fluids [1]. To date, researchers have treated ionic liquids as Newtonian fluids, and no data indicating that there are non-Newtonian ionic liquids have so far been published. However, no research effort has yet been specifically directed towards investigation of potential non-Newtonian behavior in these systems. [Pg.56]

The simplest method to measure gas solubilities is what we will call the stoichiometric technique. It can be done either at constant pressure or with a constant volume of gas. For the constant pressure technique, a given mass of IL is brought into contact with the gas at a fixed pressure. The liquid is stirred vigorously to enhance mass transfer and to allow approach to equilibrium. The total volume of gas delivered to the system (minus the vapor space) is used to determine the solubility. If the experiments are performed at pressures sufficiently high that the ideal gas law does not apply, then accurate equations of state can be employed to convert the volume of gas into moles. For the constant volume technique, a loiown volume of gas is brought into contact with the stirred ionic liquid sample. Once equilibrium is reached, the pressure is noted, and the solubility is determined as before. The effect of temperature (and thus enthalpies and entropies) can be determined by repetition of the experiment at multiple temperatures. [Pg.84]

The most common measure of polarity used by chemists in general is that of dielectric constant. It has been measured for most molecular liquids and is widely available in reference texts. However, direct measurement, which requires a nonconducting medium, is not available for ionic liquids. Other methods to determine the polarities of ionic liquids have been used and are the subject of this chapter. However, these are early days and little has been reported on ionic liquids themselves. I have therefore included the literature on higher melting point organic salts, which has proven to be very informative. [Pg.94]

In a series of papers published throughout the 1980s, Colin Poole and his co-workers investigated the solvation properties of a wide range of alkylammonium and, to a lesser extent, phosphonium salts. Parameters such as McReynolds phase constants were calculated by using the ionic liquids as stationary phases for gas chromatography and analysis of the retention of a variety of probe compounds. However, these analyses were found to be unsatisfactory and were abandoned in favour of an analysis that used Abraham s solvation parameter model [5]. [Pg.94]

There are a number of NMR methods available for evaluation of self-diffusion coefficients, all of which use the same basic measurement principle [60]. Namely, they are all based on the application of the spin-echo technique under conditions of either a static or a pulsed magnetic field gradient. Essentially, a spin-echo pulse sequence is applied to a nucleus in the ion of interest while at the same time a constant or pulsed field gradient is applied to the nucleus. The spin echo of this nucleus is then measured and its attenuation due to the diffusion of the nucleus in the field gradient is used to determine its self-diffusion coefficient. The self-diffusion coefficient data for a variety of ionic liquids are given in Table 3.6-6. [Pg.119]

In addition to the obvious structural information, vibrational spectra can also be obtained from both semi-empirical and ab initio calculations. Computer-generated IR and Raman spectra from ab initio calculations have already proved useful in the analysis of chloroaluminate ionic liquids [19]. Other useful information derived from quantum mechanical calculations include and chemical shifts, quadru-pole coupling constants, thermochemical properties, electron densities, bond energies, ionization potentials and electron affinities. As semiempirical and ab initio methods are improved over time, it is likely that investigators will come to consider theoretical calculations to be a routine procedure. [Pg.156]

When either the organic solvent or the ionic liquid is used as pure solvent, proper control over the water content, or rather the water activity, is of crucial importance, as a minimum amount is necessary to maintain the enzyme s activity. For ionic liquids, a reaction can be operated at constant water activity by use of the same methods as established for organic solvents [17]. [BMIM][PFg] or [BMIM][(CF3S02)2N], for example, may be used as pure solvents and in biphasic systems. Water-miscible ionic liquids, such as [BMIM][BF4] or [MMIM][MeS04], can be used in the second case. [Pg.337]

Recently, a eutectic mixture of choline chloride and urea (commercially known as Reline) was used as a medium from which CdS, as well as CdSe and ZnS, thin films were electrodeposited for the first time [53]. Reline is a conductive room-temperature ionic liquid (RTIL) with a wide electrochemical window. The voltammetric behavior of the Reline-Cd(II)-sulfur system was investigated, while CdS thin films were deposited at constant potential and characterized by photocurrent and electrolyte electroabsorbance spectroscopies. [Pg.93]

In a homogeneous medium of an electrolyte solution, an ionic liquid or a solid electrolyte under conditions of constant pressure and temperature, mechanical, electrostatic and short-range forces act on the individual particles in solution, but these forces average out in time. The effect of these forces is reflected in the activity values of the individual components of the system. [Pg.90]

The mobility of ions in melts (ionic liquids) has not been clearly elucidated. A very strong, constant electric field results in the ionic motion being affected primarily by short-range forces between ions. It would seem that the ionic motion is affected most strongly either by fluctuations in the liquid density (on a molecular level) as a result of the thermal motion of ions or directly by the formation of cavities in the liquid. Both of these possibilities would allow ion transport in a melt. [Pg.138]

More recently, Dupont and coworkers studied the impact of the steric effect in the hydrogenation of monoalkylbenzenes by zerovalent nanoparticles (Ir, Rh, Ru) in the ionic liquid BMI PF6. The results, when compared with those obtained with the classical supported heterogeneous catalysts, showed a relationship between the reaction constants and the steric factors [106]. [Pg.244]

Dupont et al. [60] studied the same reaction, but used [BMIM][PF6] and [BMIM][BF4] as ionic liquids. A special focus of their investigations was on the influence of H2-pressure on conversion. The Henry coefficient solubility constant was determined by pressure drop experiment in a reactor, which is a known procedure to measure gas solubilities [93]. The values reported by these authors were FC=3.0xl0-3 mol IT1 atm1 for [BMIM][BF4]/H2 and 8.8x10 4 mol L 1 atm-1 for [BMIM][PF6]/H2 at room temperature, which differ significantly from those determined by the 1H-NMR technique (see Table 41.2) [59]. However, their values indicated that molecular hydrogen is almost four times more soluble in [BMIM][BF4] than in [BMIM][PF6] under the same pressure. According to the authors, this is reflected by the values of conversion (ee), which were 73% (93% ee) for [BMIM][BF4] and 26% (81% ee) for [BMIM][PF6] at 50 bar H2 pressure (Table 41.9, entries 2 and 4). [Pg.1401]

Miscibility is an important consideration when selecting solvents for use in biphasic systems. Table 4.4 shows the miscibility of three ionic liquids with water and some organic solvents. [bmim][PFe] was found to be miscible with organic solvents whose dielectric constant is higher than 7, but was not soluble in less polar solvents or in water. Basic [bmim][AlCl4] was found to react with protic solvents, and the acidic form also reacted with acetone, tetrahydrofuran and toluene. [Pg.83]

Brennecke et al. (22) compared the Henry s law constants of several gases in [BMIMJPFe with those in toluene and methanol. The results (Fig. 9) show that CO2 has a much higher solubility in the ionic liquid than in the organic solvent. [Pg.174]

An ionic liquid was fully immobilized, rather than merely supported, on the surface of silica through a multiple-step synthesis as shown in Fig. 15 (97). A ligand tri(m-sulfonyl)triphenyl phosphine tris(l-butyl-3-methyl-imidazolium) salt (tppti) was prepared so that the catalyst, formed from dicarbonylacetylacetonate rhodium and the ligand (P/Rh = 10), could be soluble in both [BMIMJBFq and [BMIM]PF6. The supported ionic liquid-catalyst systems showed nearly three times higher rate of reaction (rate constant = 65 min ) that a biphasic system for the hydroformylation of 1-hexene at 100°C and 1500 psi in a batch reactor, but the n/i selectivity was nearly constant the same for the two ( 2.4). Unfortunately, both the supported and the biphasic ionic liquid systems exhibited similar metal leaching behavior. [Pg.222]

In a typical experiment, the aryl halide was stirred in a specially constructed electrochemical cell (Figure 2, left) containing Pd and Pt electrodes, using the ionic liquid [octylmethylimidazolium] [BF4]" as a solvent (8). This solvent combines two important advantages It is an excellent conductor and it can stabilise metal nanoparticles via an ion bilayer mechanism (9). The electrolysis was done using a constant current intensity of 10 mA at 1.6 V (cT = -0.83 V for Pd° Pd " + 2e ). [Pg.502]


See other pages where Ionic liquids constant is mentioned: [Pg.274]    [Pg.274]    [Pg.86]    [Pg.86]    [Pg.101]    [Pg.111]    [Pg.114]    [Pg.123]    [Pg.325]    [Pg.136]    [Pg.142]    [Pg.165]    [Pg.318]    [Pg.13]    [Pg.208]    [Pg.1393]    [Pg.87]    [Pg.88]    [Pg.88]    [Pg.167]    [Pg.318]    [Pg.153]    [Pg.379]    [Pg.387]    [Pg.568]    [Pg.161]    [Pg.174]    [Pg.212]    [Pg.220]    [Pg.480]    [Pg.271]   
See also in sourсe #XX -- [ Pg.110 , Pg.111 , Pg.112 ]




SEARCH



Ionic constant

© 2024 chempedia.info