Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic interactions isotherms, adsorptions

Electrolytes are used to promote the exhaustion of direct or reactive dyes on cellulosic fibres they may also be similarly used with vat or sulphur dyes in their leuco forms. In the case of anionic dyes on wool or nylon, however, their role is different as they are used to facilitate levelling rather than exhaustion. In these cases, addition of electrolyte decreases dye uptake due to the competitive absorption of inorganic anions by the fibre and a decrease in ionic attraction between dye and fibre. In most discussions of the effect of electrolyte on dye sorption, attention is given only to the ionic aspects of interaction. In most cases, this does not create a problem and so most adsorption isotherms of water-soluble dyes are interpreted on the basis of Langmuir or Donnan ionic interactions only. There are, however, some observed cases of apparently anomalous behaviour of dyes with respect to electrolytes that cannot be explained by ionic interactions alone. [Pg.34]

Fig. 3. Schematics of the influence of electrostatic interactions on adsorption isotherms of polyelectrolytes. Effect of charge contrast between the polyelectrolyte and the sorbent surface in media of (a) low and (b) high ionic strength. Fig. 3. Schematics of the influence of electrostatic interactions on adsorption isotherms of polyelectrolytes. Effect of charge contrast between the polyelectrolyte and the sorbent surface in media of (a) low and (b) high ionic strength.
Typical adsorption isotherms are shown in Figs. 16 and 17. Despite the large experimental scatter, a steep increase in adsorption can be seen at low concentrations, followed by a plateau at concentrations exceeding the CMC. Similar behavior has been observed before with model surfactants [49-54] and has also been predicted by modem theories of adsorption [54]. According to Fig. 16, adsorption increases modestly with salinity provided that the calcium ion concentration remains low. The calcium influence, shown in Fig. 17, cannot be explained by ionic strength effects alone but may be due to calcium-kaolinite interactions. [Pg.405]

Fig. 4. Influence of pH on the plateau-value /T of adsorption isotherms of polyampholytes. At either side of the isoelectric point, i.e.p., the polyampholyte attains a net charge causing intra- and intermolecular electrostatic repulsion. As a result, the mass of adsorbed polyampholyte, that can be accommodated per unit area of the sorbent surface, decreases. Electrostatic interactions are suppressed by increasing ionic strength, yielding /T less sensitive to pH. Fig. 4. Influence of pH on the plateau-value /T of adsorption isotherms of polyampholytes. At either side of the isoelectric point, i.e.p., the polyampholyte attains a net charge causing intra- and intermolecular electrostatic repulsion. As a result, the mass of adsorbed polyampholyte, that can be accommodated per unit area of the sorbent surface, decreases. Electrostatic interactions are suppressed by increasing ionic strength, yielding /T less sensitive to pH.
The amount of adsorbed chemical is controlled by both properties of the chemical and of the clay material. The clay saturating cation is a major factor affecting the adsorption of the organophosphorus pesticide. The adsorption isotherm of parathion from an aqueous solution onto montmorillonite saturated with various cations (Fig. 8.32), shows that the sorption sequence (Al > Na > Ca ) is not in agreement with any of the ionic series based on ionic properties. This shows that, in parathion-montmoriUonite interactions in aqueous suspension, such factors as clay dispersion, steric effects, and hydration shells are dominant in the sorption process. In general, organophosphorus adsorption on clays is described by the Freundhch equation, and the values for parathion sorption are 3 for Ca +-kaoUnite, 125 for Ca -montmorillonite, and 145 for Ca -attapulgite. [Pg.189]

The deviations from the Szyszkowski-Langmuir adsorption theory have led to the proposal of a munber of models for the equihbrium adsorption of surfactants at the gas-Uquid interface. The aim of this paper is to critically analyze the theories and assess their applicabihty to the adsorption of both ionic and nonionic surfactants at the gas-hquid interface. The thermodynamic approach of Butler [14] and the Lucassen-Reynders dividing surface [15] will be used to describe the adsorption layer state and adsorption isotherm as a function of partial molecular area for adsorbed nonionic surfactants. The traditional approach with the Gibbs dividing surface and Gibbs adsorption isotherm, and the Gouy-Chapman electrical double layer electrostatics will be used to describe the adsorption of ionic surfactants and ionic-nonionic surfactant mixtures. The fimdamental modeling of the adsorption processes and the molecular interactions in the adsorption layers will be developed to predict the parameters of the proposed models and improve the adsorption models for ionic surfactants. Finally, experimental data for surface tension will be used to validate the proposed adsorption models. [Pg.27]

Lateral interaction work of water adsoiption, 907 Lateral interactions of ionic adsoiption, 924, 944 Lateral interactions and Frumkin s isotherm, 938 Lattice gas models of adsorption, 965 Lattice spacing, 1276 Laue pattern, 793... [Pg.43]

However, when adsorption of ionic species takes place on solid electrodes, it is difficult to decide what particular characteristic—surface heterogeneity, transfer of charge, lateral interactions, displacement of adsorbed solvent, size of the ions, etc.—is dominant in the process or which one can be neglected. Nonetheless, would it not be possible to include all these effects in a single isotherm It is possible, although not easy. In the following sections we will introduce the development of one isotherm for ionic adsorption where many of these distinctive characteristics of ionic adsorption are considered. [Pg.225]

This is the equation, the isotherm, we were seeking. It is a generalized isotherm for the adsorption of ionic species on a heterogeneous surface. It considers the adsorption reaction as a substitution process, with the possibility of transfer of charge between the ion and the electrode and also lateral interactions among adsorbed species. [Pg.236]

What does Eq. (6.246) mean This equation represents the adsorption process of ions on metallic surfaces. It includes several conditions that are characteristic of the adsorption process of ionic species, namely, surface heterogeneity, solvent displacement, charge transfer, lateral interactions, and ion size. However, is this equation capable of describing the adsorption process of ions In other words, what is the success of the isotherm described in Eq. (6.246) Figure 6.104 shows a comparison of data obtained experimentally for the adsorption of two ions—chloride and bisulfate—on polycrystalline platinum, with that obtained applying Eq. (6.246). The plots indicate that the theory is able to reproduce the experimental results quite satisfactorily. The isotherm may be considered a success in the theory of ionic adsorption. [Pg.237]

There are differences in isotherm shape, and for DTAB the behavior is not amenable to a simple explanation. Of particular interest are plots of the amount adsorbed against the mean ionic activity of the surface active agent (including the counterion of the added electrolyte). In the case of DTAB all the data, including others at various salt concentrations up to 0.5M, lie on one line which, after an initial steep rise, is linear to the c.m.c. This indicates that for other than the initial strong adsorption at low concentrations (possibly because of specific interactions with the surface) the adsorption follows the law of mass action. For SDS a similar result is obtained except that positive deviations from the straight line occur below a — 4 X 10 3M for the cases (salt concentration < O.lAf) when there is a point of inflection in the isotherm. These deviations may reflect specific interactions of the DS" with the surface when the ions are adsorbed in parallel orientation. [Pg.148]


See other pages where Ionic interactions isotherms, adsorptions is mentioned: [Pg.449]    [Pg.594]    [Pg.50]    [Pg.919]    [Pg.47]    [Pg.579]    [Pg.58]    [Pg.664]    [Pg.1356]    [Pg.847]    [Pg.22]    [Pg.256]    [Pg.415]    [Pg.253]    [Pg.236]    [Pg.727]    [Pg.138]    [Pg.103]    [Pg.278]    [Pg.296]    [Pg.47]    [Pg.48]    [Pg.53]    [Pg.236]    [Pg.225]    [Pg.170]    [Pg.348]    [Pg.238]    [Pg.127]    [Pg.321]    [Pg.102]    [Pg.40]    [Pg.52]    [Pg.246]    [Pg.246]   
See also in sourсe #XX -- [ Pg.43 ]

See also in sourсe #XX -- [ Pg.43 ]




SEARCH



Adsorption interactions

Adsorptive interactions

Ionic adsorption

Ionic interactions

© 2024 chempedia.info