Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic conduction applications

Molten vanadate ashes (melts) can exhibit both semiconducting and ionic conduction and experiments have shown that semiconducting melts are more coiTosive than those exhibiting ionic conduction. Application of this knowledge as a corrosion control technique is not yet feasible, and a more complete discussion will not be attempted in this article. [Pg.266]

One of the most important advances in electrochemistry in the last decade was tlie application of STM and AFM to structural problems at the electrified solid/liquid interface [108. 109]. Sonnenfield and Hansma [110] were the first to use STM to study a surface innnersed in a liquid, thus extending STM beyond the gas/solid interfaces without a significant loss in resolution. In situ local-probe investigations at solid/liquid interfaces can be perfomied under electrochemical conditions if both phases are electronic and ionic conducting and this... [Pg.1948]

Applications. Polymers with small alkyl substituents, particularly (13), are ideal candidates for elastomer formulation because of quite low temperature flexibiUty, hydrolytic and chemical stabiUty, and high temperature stabiUty. The abiUty to readily incorporate other substituents (ia addition to methyl), particularly vinyl groups, should provide for conventional cure sites. In light of the biocompatibiUty of polysdoxanes and P—O- and P—N-substituted polyphosphazenes, poly(alkyl/arylphosphazenes) are also likely to be biocompatible polymers. Therefore, biomedical appHcations can also be envisaged for (3). A third potential appHcation is ia the area of soHd-state batteries. The first steps toward ionic conductivity have been observed with polymers (13) and (15) using lithium and silver salts (78). [Pg.260]

For a large number of applications involving ceramic materials, electrical conduction behavior is dorninant. In certain oxides, borides (see Boron compounds), nitrides (qv), and carbides (qv), metallic or fast ionic conduction may occur, making these materials useful in thick-film pastes, in fuel cell apphcations (see Fuel cells), or as electrodes for use over a wide temperature range. Superconductivity is also found in special ceramic oxides, and these materials are undergoing intensive research. Other classes of ceramic materials may behave as semiconductors (qv). These materials are used in many specialized apphcations including resistance heating elements and in devices such as rectifiers, photocells, varistors, and thermistors. [Pg.349]

The ionic conductivity of a solvent is of critical importance in its selection for an electrochemical application. There are a variety of DC and AC methods available for the measurement of ionic conductivity. In the case of ionic liquids, however, the vast majority of data in the literature have been collected by one of two AC techniques the impedance bridge method or the complex impedance method [40]. Both of these methods employ simple two-electrode cells to measure the impedance of the ionic liquid (Z). This impedance arises from resistive (R) and capacitive contributions (C), and can be described by Equation (3.6-1) ... [Pg.109]

Generally, solid electrolytes for battery applications require high ionic conductivities and wide ranges of appropriate thermodynamic stability. [Pg.533]

However, in the case of the perovskite even the application of sintering temperatures as high as 1200 °C did not result in a higher overall ionic conductivity. Since the total ionic conductivity is two orders of magnitude lower than the bulk conductivity in polycrystalline Li0 34La05] Ti 0294, an improvement by way of the preparation route is necessary rather than changes in the lattice by the addition of dopants,... [Pg.538]

Thin-film solid electrolytes in the range of lpm have the advantage that the material which is inactive for energy storage is minimized and the resistance of the solid electrolyte film is drastically decreased for geometrical reasons. This allows the application of a large variety of solid electrolytes which exhibit quite poor ionic conductivity but high thermodynamic stability. The most important thin-film preparation methods for solid electrolytes are briefly summarized below. [Pg.543]

Electrical conductivity measurements revealed that ionic conductivity of Ag-starch nanocomposites increased as a function of temperature (Fig.l7) which is an indication of a thermally activated conduction mechanism [40]. This behavior is attributed to increase of charge carrier (Ag+ ions) energy with rise in temperature. It is also foimd to increase with increasing concentration of Ag ion precursor (inset of Fig.l7). This potentiality can lead to development of novel biosensors for biotechnological applications such as DNA detection. [Pg.138]

Solid mixed ionic-electronic conductors (MIECs) exhibit both ionic and electronic (electron-hole) conductivity. Naturally, in any material there are in principle nonzero electronic and ionic conductivities (a i, a,). It is customary to limit the use of the term MIEC to those materials in which a, and 0, 1 do not differ by more than two orders of magnitude. It is also customary to use the term MIEC if a, and Ogi are not too low (o, a i 10 S/cm). Obviously, there are no strict rules. There are processes where the minority carriers play an important role despite the fact that 0,70 1 exceeds those limits and a, aj,i< 10 S/cm. In MIECs, ion transport normally occurs via interstitial sites or by hopping into a vacant site or a more complex combination based on interstitial and vacant sites, and electronic (electron/hole) conductivity occurs via delocalized states in the conduction/valence band or via localized states by a thermally assisted hopping mechanism. With respect to their properties, MIECs have found wide applications in solid oxide fuel cells, batteries, smart windows, selective membranes, sensors, catalysis, and so on. [Pg.436]

In battery applications, new hthium ion batteries called lithium ion polymer batteries (or more simply but misleadingly, lithium polymer batteries) work with a full matrix of ionically conducting polymer, this polymer being present inside the porous electrodes and as a separator between the electrodes. They are offered in attractive flat shapes for mobile applications (mobile phones, notebooks). [Pg.456]

Unique combinations of properties continue to be discovered in inorganic and organometallic macromolecules and serve to continue a high level of interest with regard to potential applications. Thus, Allcock describes his collaborative work with Shriver (p. 250) that led to ionically conducting polyphosphazene/salt complexes with the highest ambient temperature ionic conductivities known for polymer/salt electrolytes. Electronic conductivity is found via the partial oxidation of unusual phthalocyanine siloxanes (Marks, p. 224) which contain six-coordinate rather than the usual four-coordinate Si. [Pg.4]

Recently, there has been considerable interest in developing molten salts that are less air and moisture sensitive. Melts such as l-methyl-3-butylimidazolium hexa-fluorophosphate [211], l-ethyl-3-methylimidazolium trifluoromethanesulfonate [212], and l-ethyl-3-methylimidazolium tetrafluoroborate [213] are reported to be hydro-phobic and stable under environmental conditions. In some cases, metal deposition from these electrolytes has been explored [214]. They possess a wide potential window and sufficient ionic conductivity to be considered for many electrochemical applications. Of course if one wishes to take advantage of their potential air stability, one loses the opportunity to work with the alkali and reactive metals. Further, since these ionic liquids are neutral and lack the adjustable Lewis acidity common to the chloroaluminates, the solubility of transition metal salts into these electrolytes may be limited. On a positive note, these electrolytes are significantly different from the chloroaluminates in that the supporting electrolyte is not intended to be electroactive. [Pg.339]

Conductivity sensors are most commonly used for safety purposes in household appliances. Presence and absence of washing liquor, detergency, and water softener can be easily measured and proper operation ensured [71]. The various applications mainly differ by their design of electrode geometry and methods for electrical measurement. Due to the close relation between ionic conductivity and water hardness, the automatic water softener in an automatic dishwasher can be controlled by a conductivity sensor [72]. To isolate the transmission of the measured value from the process controller, the conductivity sensor could incorporate an opto-electronical coupling [73]. Thus, protective insulation of the electrodes in a washer-dryer could be ensured. [Pg.107]

For a battery to give a reasonable power output, the ionic conductivity of the electrolyte must be substantial. Historically, this was achieved by the use of liquid electrolytes. However, over the last quarter of a century there has been increasing emphasis on the production of batteries and related devices employing solid electrolytes. These are sturdy and ideal for applications where liquid electrolytes pose problems. The primary technical problem to overcome is that of achieving high ionic conductivity across the solid. [Pg.252]

The first four chapters introduce basic concepts that are developed to build up a framework for understanding defect chemistry and physics. Thereafter, chapters focus rather more on properties related to applications. Chapter 5 describes diffusion in solids Chapter 6, ionic conductivity Chapters 7 and 8 the important topics of electronic conductivity, both intrinsic (Chapter 7) and extrinsic (Chapter 8). The final chapter gives a selected account of magnetic and optical defects. [Pg.548]

The membranes used in the present cells are expensive and available only in limited ranges of thickness and specific ionic conductivity. There is a need to lower the cost of the present membranes and to investigate lower cost membranes that exhibit low resistivity. This is particularly important for transportation applications where high current density operation is needed. Cheaper membranes promote lower cost PEFCs and thinner membranes with lower resistivities could contribute to power density improvement (29). It is estimated that the cost of current membranes could fall (by one order of magnitude) if the market increased significantly (by two orders of magnitude) (22). [Pg.84]


See other pages where Ionic conduction applications is mentioned: [Pg.137]    [Pg.137]    [Pg.258]    [Pg.153]    [Pg.449]    [Pg.1306]    [Pg.525]    [Pg.536]    [Pg.542]    [Pg.543]    [Pg.545]    [Pg.92]    [Pg.410]    [Pg.311]    [Pg.348]    [Pg.196]    [Pg.25]    [Pg.256]    [Pg.335]    [Pg.336]    [Pg.425]    [Pg.429]    [Pg.69]    [Pg.394]    [Pg.251]    [Pg.268]    [Pg.5]    [Pg.14]    [Pg.23]    [Pg.102]    [Pg.3]    [Pg.2]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Conducting application

Conductive applications

Ionic conductance

Ionic conducting

Ionic conduction

Ionic conductivity

Ionic conductivity applications

Proton-conducting membranes ionic liquid applications

© 2024 chempedia.info