Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ion-selective method

Jaramillo et al. published an article regarding some ion-selective microelectrodes used in the analysis of acetylcholine and choline [220]. [Pg.105]

Szepesy et al. used a microwave apparatus in the determination of acetylcholine and choline in the central nervous system samples [221]. Schmidt et al. reported the use of a microwave radiation method for the determination of acetylcholine in the rat brain [222]. [Pg.105]


Table 2 Concentration values synthetic type reference material. Grav. M, gravimetric method Flamp. M, flame photometry Ion S. M, ion selective method Cont. F, continuous flow Spp. M,... Table 2 Concentration values synthetic type reference material. Grav. M, gravimetric method Flamp. M, flame photometry Ion S. M, ion selective method Cont. F, continuous flow Spp. M,...
Ion-exchange methods are based essentially on a reversible exchange of ions between an external liquid phase and an ionic solid phase. The solid phase consists of a polymeric matrix, insoluble, but permeable, which contains fixed charge groups and mobile counter ions of opposite charge. These counter ions can be exchanged for other ions in the external liquid phase. Enrichment of one or several of the components is obtained if selective exchange forces are operative. The method is limited to substances at least partially in ionized form. [Pg.1109]

Initial attempts at developing precipitation titration methods were limited by a poor end point signal. Finding the end point by looking for the first addition of titrant that does not yield additional precipitate is cumbersome at best. The feasibility of precipitation titrimetry improved with the development of visual indicators and potentiometric ion-selective electrodes. [Pg.354]

Finding the End Point Potcntiomctrically Another method for locating the end point of a precipitation titration is to monitor the change in concentration for the analyte or titrant using an ion-selective electrode. The end point can then be found from a visual inspection of the titration curve. A further discussion of potentiome-try is found in Chapter 11. [Pg.354]

Representative Method Ion-selective electrodes find application in numerous quantitative analyses, each of which has its own unique considerations. The following procedure for the analysis of fluoride in toothpaste provides an instructive example. [Pg.489]

Clinical Applications Perhaps the area in which ion-selective electrodes receive the widest use is in clinical analysis, where their selectivity for the analyte in a complex matrix provides a significant advantage over many other analytical methods. The most common analytes are electrolytes, such as Na+, K+, Ca +, H+, and Ch, and dissolved gases, such as CO2. For extracellular fluids, such as blood and urine, the analysis can be made in vitro with conventional electrodes, provided that sufficient sample is available. Some clinical analyzers place a series of ion-selective electrodes in a flow... [Pg.492]

Environmental Applications Although ion-selective electrodes find use in environmental analysis, their application is not as widespread as in clinical analysis. Standard methods have been developed for the analysis of CN , F , NH3, and in water and wastewater. Except for F , however, other analytical methods are considered superior. By incorporating the ion-selective electrode into a flow cell, the continuous monitoring of wastewater streams and other flow systems is possible. Such applications are limited, however, by the electrode s response to the analyte s activity, rather than its concentration. Considerable interest has been shown in the development of biosensors for the field screening and monitoring of environmental samples for a number of priority pollutants. [Pg.494]

Potcntiomctric Titrations In Chapter 9 we noted that one method for determining the equivalence point of an acid-base titration is to follow the change in pH with a pH electrode. The potentiometric determination of equivalence points is feasible for acid-base, complexation, redox, and precipitation titrations, as well as for titrations in aqueous and nonaqueous solvents. Acid-base, complexation, and precipitation potentiometric titrations are usually monitored with an ion-selective electrode that is selective for the analyte, although an electrode that is selective for the titrant or a reaction product also can be used. A redox electrode, such as a Pt wire, and a reference electrode are used for potentiometric redox titrations. More details about potentiometric titrations are found in Chapter 9. [Pg.494]

The effect of an uncertainty in potential on the accuracy of a potentiometric method of analysis is evaluated using a propagation of uncertainty. For a membrane ion-selective electrode the general expression for potential is given as... [Pg.495]

Buck, R. P. Potentiometry pH Measurements and Ion Selective Electrodes. In Weissberger, A., ed.. Physical Methods of Organic Chemistry, Vol. 1, Part IIA. Wiley New York, 1971, pp. 61-162. Cammann, K. Working with Ion-Selective Electrodes. Springer-Verlag Berlin, 1977. [Pg.541]

This experiment includes instructions for preparing a picrate ion-selective electrode. The application of the electrode in determining the concentration of creatinine in urine (which is further described in Method 13.1) also is outlined. [Pg.659]

The most popular device for fluoride analysis is the ion-selective electrode (see Electro analytical techniques). Analysis usiag the electrode is rapid and this is especially useful for dilute solutions and water analysis. Because the electrode responds only to free fluoride ion, care must be taken to convert complexed fluoride ions to free fluoride to obtain the total fluoride value (8). The fluoride electrode also can be used as an end poiat detector ia titration of fluoride usiag lanthanum nitrate [10099-59-9]. Often volumetric analysis by titration with thorium nitrate [13823-29-5] or lanthanum nitrate is the method of choice. The fluoride is preferably steam distilled from perchloric or sulfuric acid to prevent iaterference (9,10). Fusion with a sodium carbonate—sodium hydroxide mixture or sodium maybe required if the samples are covalent or iasoluble. [Pg.138]

Eluorspar assay may be completed by fluoride determination alone, because the mineralogical grouping rarely iacludes fluorine minerals other than fluorite. Calcium can be determined as oxalate or by ion-selective electrodes (67). SiUca can be determined ia the residue from solution ia perchloric acid—boric acid mixture by measuriag the loss ia weight on Aiming off with hydrofluoric acid. Another method for determining siUca ia fluorspar is the ASTM Standard Test Method E463-72. [Pg.175]

Methods for iodine deterrnination in foods using colorimetry (95,96), ion-selective electrodes (94,97), micro acid digestion methods (98), and gas chromatography (99) suffer some limitations such as potential interferences, possibHity of contamination, and loss during analysis. More recendy neutron activation analysis, which is probably the most sensitive analytical technique for determining iodine, has also been used (100—102). [Pg.364]

The other method is less accurate but more rapid and involves direct Nessleri2ation of the sample for colorimetric deterrnination. Other colorimetric indicators with more sensitivity, such as indophenol, have been used in place of Nessler s reagent. Ion-selective electrodes have also found use in analysis for trace ammonia (93). [Pg.357]

The sodium hydroxide is titrated with HCl. In a thermometric titration (92), the sibcate solution is treated first with hydrochloric acid to measure Na20 and then with hydrofluoric acid to determine precipitated Si02. Lower sibca concentrations are measured with the sibcomolybdate colorimetric method or instmmental techniques. X-ray fluorescence, atomic absorption and plasma emission spectroscopies, ion-selective electrodes, and ion chromatography are utilized to detect principal components as weU as trace cationic and anionic impurities. Eourier transform infrared, ft-nmr, laser Raman, and x-ray... [Pg.11]

Instmmental methods are useful for the determination of the total silver ia a sample, but such methods do not differentiate the various species of silver that may be present. A silver ion-selective electrode measures the activity of the silver ions present ia a solution. These activity values can be related to the concentration of the free silver ion ia the solution. Commercially available silver ion-selective electrodes measure Ag+ down to 10 flg/L, and special silver ion electrodes can measure free silver ion at 1 ng/L (27) (see Electro analytical techniques). [Pg.91]

Nitrate can also be measured potentiometrically with an ion-selective electrode at 10 10 M (24,25). This method is suggested as a screening method for determining the approximate nitrate concentration (20). Ion chromatography can be used for nitrate concentrations of 2 to 10 ppb (23). [Pg.231]

Ion Selective Electrodes Technique. Ion selective (ISE) methods, based on a direct potentiometric technique (7) (see Electroanalytical techniques), are routinely used in clinical chemistry to measure pH, sodium, potassium, carbon dioxide, calcium, lithium, and chloride levels in biological fluids. [Pg.395]

Ammonia Coulometry (e.g. Nessler method) Ion selective electrode Oxidation to NO and chemiluminescence... [Pg.312]

Hydrogen cyanide in air Lab method using an ion-selective electrode 5612... [Pg.362]

Buck, R. P. Potentiometry, pH measurements and ion-selective electrodes, in Physical Methods of Chemistry, part Ha (eds.) Weissberger, A., Rossiter, B. W., New York, Interscience 1971... [Pg.257]

In electro-gravimetric analysis the element to be determined is deposited electroly tically upon a suitable electrode. Filtration is not required, and provided the experimental conditions are carefully controlled, the co-deposition of two metals can often be avoided. Although this procedure has to a large extent been superseded by potentiometric methods based upon the use of ion-selective electrodes (see Chapter 15), the method, when applicable has many advantages. The theory of the process is briefly discussed below in order to understand how and when it may be applied for a more detailed treatment see Refs 1-9. [Pg.503]

As an alternative to plotting a calibration curve, the method of standard addition may be used. The appropriate ion-selective electrode is first set up, together with a suitable reference electrode in a known volume (Ft) of the test solution, and then the resultant e.m.f. ( t) is measured. Applying the usual Nernst equation, we can say... [Pg.571]


See other pages where Ion-selective method is mentioned: [Pg.105]    [Pg.406]    [Pg.195]    [Pg.105]    [Pg.406]    [Pg.195]    [Pg.36]    [Pg.322]    [Pg.477]    [Pg.489]    [Pg.494]    [Pg.260]    [Pg.268]    [Pg.307]    [Pg.159]    [Pg.141]    [Pg.421]    [Pg.57]    [Pg.58]    [Pg.153]    [Pg.362]    [Pg.1023]    [Pg.1025]    [Pg.54]    [Pg.189]    [Pg.211]    [Pg.221]    [Pg.227]   


SEARCH



Ion method

Ion-selective and Potentiometric methods

Method selection

Method selectivity

SELECT method

Selected Ion Monitoring Method

Selective ion monitoring method

Selective methods

© 2024 chempedia.info