Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ion isotherms

In Fig. 8a the dissociation energy is the work required to break up one molecule and leave the ions at rest in a vacuum. In Fig. 8b the dissociation energy D is the work required to break up one molecule and to separate the ions isothermally in a solvent at temperature T. Although... [Pg.22]

Hydrogen ion isotherms are far more complex than the linear approximations represented by Equation 14 and used in Figures 4 and 5. [Pg.145]

When the analyte mobile phase concentration is small, only a negligible fraction of the HR is in the form of a complex, hence its concentration [H] in the eluent can be considered invariant [3]. Both the pairing ion isotherm and the surface potential are unchanged by the presence of the sample ion [31,33]. In this case [20], analyte retention as a function of the mobile and stationary phase concentrations of the HR can be described, respectively, by the following expressions ... [Pg.39]

We csitu SAXS sample (liam-b(M 1G polyol liyleneterepht halat< -fiim ( Humilei loray ( o., I.td.) were used for the windows of in situ m< Lsuriiig chamber and sample holder, d he sample chamber is connected to the gas adsorption system. I lie adsorpt ion isotherm of watoi(Ui the samples can bo measured siinullnmxiusly by the volume-metric method under the same Cfuiditions as the SAXS measurement. [Pg.356]

Van Riemsdijk et al. [53] were the first to show that electrostatic effects could explain non-stoichiometric exchange ratios. Predictions with the one-pKn SCG model and the two-pKn SGC model were both in a good agreement with experimentally observed proton/M ratios and metal ion isotherms at a series of pH values for rutile, hematite and amorphous iron oxide. In contrast with Benjamin and Leckie [86], Van Riemsdijk et al. [53] concluded that incorporation of surface heterogeneity is not required to describe cadmium adsorption on amorphous iron oxide. [Pg.784]

A tremendous variety of structures is known, and some of the three-dimensional network ones are porous enough to show the same type of swelling phenomena as the layer structures—and also ion exchange behavior. The zeolites fall in this last category and have been studied extensively, both as ion exchangers and as gas adsorbents (e.g.. Refs. 185 and 186). As an example, Goulding and Talibudeen have reported on isotherms and calorimetric heats of Ca -K exchange for several aluminosilicates [187]. [Pg.417]

Stahlberg has presented models for ion-exchange chromatography combining the Gouy-Chapman theory for the electrical double layer (see Section V-2) with the Langmuir isotherm (. XI-4) [193] and with a specific adsorption model [194]. [Pg.418]

These calculations have, as their aim, the generation of an adsorption isotherm, relating the concentration of ions in the solution to the coverage in the IHP and the potential (or more usually the charge) on the electrode. No complete calculations have been carried out incorporating all the above temrs. In general, the analytical fomi for the isothemr is... [Pg.594]

Thus in Fig. 5.22 the first outgassing at 25°C will have removed physisorbed water only, so that curve (1) is the isotherm of physical adsorption on the fully hydroxylated material. The 300°C outgassing, on the other hand, will have removed all the ligand water and the majority of the hydroxyl groups when isotherm (4) is determined, therefore, the Ti ions will chemisorb ligand water at low relative pressure, but the number of hydroxyl groups reformed will be very small. [Pg.279]

McCabe-Thiele diagrams for nonlinear and more practical systems with pertinent inequaUty constraints are illustrated in Figures 11 and 12. The convex isotherms are generally observed for 2eohtic adsorbents, particularly in hydrocarbon separation systems, whereas the concave isotherms are observed for ion-exchange resins used in sugar separations. [Pg.298]

Ion-exchange isotherms assume different shapes depending on the selectivity factor and the variations in with the level of exchange The rational selectivity coefficient includes the ionic charge and is given by... [Pg.450]

Fig. 8. Ion-exchange isotherm. The separation factor is given by the ratio of area 1/area II (1). See text. Fig. 8. Ion-exchange isotherm. The separation factor is given by the ratio of area 1/area II (1). See text.
Characterization. When siHca gel is used as an adsorbent, the pore stmcture determines the gel adsorption capacity. Pores are characterized by specific surface area, specific pore volume (total volume of pores per gram of solid), average pore diameter, pore size distribution, and the degree to which entrance to larger pores is restricted by smaller pores. These parameters are derived from measuring vapor adsorption isotherms, mercury intmsion, low angle x-ray scattering, electron microscopy, gas permeabiHty, ion or molecule exclusion, or the volume of imbibed Hquid (1). [Pg.491]

The solubilities of Li, Na, and Ca hypochlorites in H2O at 25°C ate 40, 45, and 21%, respectively. Solubility isotherms in water at 10°C have been determined for the following systems Ca(OCl)2—CaCl2, NaOCl—NaCl, and Ca(OCl)2—NaOCl (141). The densities of approximately equimolar solutions of NaOCl and NaCl ate given in several product bulletins (142). The uv absorption spectmm of C10 shows a maximum at 292 nm with a molar absorptivity of 350 cm ( 5)- Heats of formation of alkali and alkaline earth hypochlorites ate given (143). Thermodynamic properties of the hypochlorite ion ate ... [Pg.469]

The working capacity of a sorbent depends on fluid concentrations and temperatures. Graphical depiction of soration equilibrium for single component adsorption or binary ion exchange (monovariance) is usually in the form of isotherms [n = /i,(cd or at constant T] or isosteres = pi(T) at constant /ij. Representative forms are shown in Fig. I6-I. An important dimensionless group dependent on adsorption equihbrium is the partition ratio (see Eq. 16-125), which is a measure of the relative affinities of the sorbea and fluid phases for solute. [Pg.1497]

Adsorption with strongly favorable isotherms and ion exchange between strong electrolytes can usually be carried out until most of the stoichiometric capacity of the sorbent has been utilized, corresponding to a thin MTZ. Consequently, the total capacity of the bed is... [Pg.1498]

Many models have been proposed for adsorption and ion exchange equilibria. The most important factor in selecting a model from an engineering standpoint is to have an accurate mathematical description over the entire range of process conditions. It is usually fairly easy to obtain correcl capacities at selected points, but isotherm shape over the entire range is often a critical concern for a regenerable process. [Pg.1503]

The capacity factors of SN-SiO, for metal ions were determined under a range of different conditions of pH, metal ions concentrations and time of interaction. Preconcentration of Cd ", Pb ", Zn " and CvS were used for their preliminary determination by flame atomic absorption spectroscopy. The optimum pH values for quantitative soi ption ai e 5.8, 6.2, 6.5, 7.0 for Pb, Cu, Cd and Zn, respectively. The sorption ability of SN-SiO, to metal ions decrease in line Pb>Cu> >Zn>Cd. The soi ption capacity of the sorbent is 2.7,7.19,11.12,28.49 mg-g Hor Cd, Zn, Pb, andCu, respectively. The sorbent distribution coefficient calculated from soi ption isotherms was 10 ml-g for studied cations. All these metal ions can be desorbed with 5 ml of O.lmole-k HCl (sorbent recovery average out 96-100%). [Pg.274]

BBT solution on unmodified sorbents of different nature was studied. Silica gel Merck 60 (SG) was chosen for further investigations. BBT immobilization on SG was realized by adsoi ption from chloroform-hexane solution (1 10) in batch mode. The isotherm of BBT adsoi ption can be referred to H3-type. Interaction of Co(II), Cu(II), Cd(II), Ni(II), Zn(II) ions with immobilized BBT has been studied in batch mode as a function of pH of solution, time of phase contact and concentration of metals in solution. In the presence of sodium citrate absorbance (at X = 620 nm) of immobilized BBT grows with the increase of Cd(II) concentration in solution. No interference was observed from Zn(II), Pb(II), Cu(II), Ni(II), Co(II) and macrocomponents of natural waters. This was assumed as a basis of soi ption-spectroscopic and visual test determination of Cd(II). Heavy metals eluted from BBT-SG easily and quantitatively with a small volume of HNO -ethanol mixture. This became a basis of soi ption-atomic-absoi ption determination of the total concentration of heavy metals in natural objects. [Pg.292]

We developed a sensor for determination of content of phosphorars in metallurgical melts. In quality of ion conductor used orthophosphate of calcium which pressed in tablets 010 mm. Tablets (mass 1-2 g) annealed at a temperature 400°C during 7-10 h. Tablets melts then in a quartz tube and placed the alloy of iron containing 1 mass % P. Control of sensor lead on Fe - P melts. Information on activities (effective concentration) of phosphorars in Fe - P melts was received. It is set that the isotherm of activity of phosphorars shows negative deviations from the Raouls law. Comparison them with reliable literary inforiuation showed that they agree between itself. Thus, reliable data on activities (effective concentration) of phosphorars in metallic melts it is possible to received by created electrochemical sensor for express determination. [Pg.326]

The dissolution of passive films, and hence the corrosion rate, is controlled by a chemical activation step. In contrast to the enhancement of the rate of dissolution by OH ions under film-free conditions, the rate of dissolution of the passive film is increased by increasing the ion concentration, and the rate of corrosion in film-forming conditions such as near-neutral solutions follows the empirical Freundlich adsorption isotherm ... [Pg.310]

Mass-transfer deposits can lead to blockages in non-isothermal circulating systems, cis in the case of liquid-metal corrosion. In fused salts, the effect can be reduced by keeping contamination of the melt by metal ions to a minimum e.g. by eliminating oxidising impurities or by maintaining reducing conditions over the melt . [Pg.440]

I.H.P. and O.H.P. (the diffuse layer being disregarded), and adistinction is made between contact-adsorbed ions and ions electrostatically adsorbed by long-range coulombk forces, Wroblowa, Kovac and Bockris showed that when = 0(pzc). the B,D.M. isotherm can be expressed in the form... [Pg.1188]

At large distances the curve of Fig. 8b is a plot of — (c2/ r)> where t is the macroscopic dielectric constant of the solvent at the temperature considered. For small values of r the curve deviates from this value but at every point the slope of the curve must represent the mean intensity of the mutual attraction or repulsion at the particular temperature considered. If the curve of Fig. 86 for dissociation in solution is to be useful, every point on this curve must belong to the same temperature T. That is to say, when we consider any change in the distance r between the ions, we are interested in an isothermal change in r. [Pg.22]

If a piece of metal, such as silver, is dipping into a solvent, and a positive atomic core is taken from the surface into the solvent, the ion is again surrounded by its electrostatic field but free energy has been lost by the dielectric, and a relatively small amount of work has had to be done. The corresponding potential-energy curve (Fig. 96) is therefore much less steep and has a much shallower minimum than that of Fig. 9a. For large distances d from a plane metal surface this curve is a plot of — c2/4td where t is the dielectric constant of the medium at the temperature considered The curve represents the work done in an isothermal removal of the positive core. [Pg.24]

The three arrows drawn in Fig. 12 correspond to any set of three steps in Fig. 1. In both cases we have hitherto avoided referring to the three steps as forming a cycle, though, if the two curves of Fig. 12 were drawn for the same temperature, they could be used for describing an isothermal cycle. Consider, for example, an ionic crystal at temperature T. The upper curve of Fig. 12 could be used for removing a pair of ions into a vacuum. Next plunge the separate ions into a solvent and finally use the lower curve to replace the ions on the surface of the crystal. Conversely, the cycle could be carried out in the opposite direction. In either case the cycle will be equivalent to the three steps of Fig. la. [Pg.26]


See other pages where Ion isotherms is mentioned: [Pg.179]    [Pg.304]    [Pg.63]    [Pg.1154]    [Pg.179]    [Pg.304]    [Pg.63]    [Pg.1154]    [Pg.119]    [Pg.82]    [Pg.280]    [Pg.450]    [Pg.450]    [Pg.450]    [Pg.236]    [Pg.291]    [Pg.1497]    [Pg.1497]    [Pg.1498]    [Pg.1507]    [Pg.1522]    [Pg.1536]    [Pg.1540]    [Pg.743]    [Pg.803]    [Pg.815]    [Pg.1188]    [Pg.1226]   
See also in sourсe #XX -- [ Pg.74 ]




SEARCH



Hydrogen ion-exchange isotherm

Ion exchange isotherms for

Steric Mass Action Isotherms for Ion Exchange Equilibria

© 2024 chempedia.info