Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ion displacement reaction

Thus we think of the chemical ionization of paraffins as involving a randomly located electrophilic attack of the reactant ion on the paraffin molecule, which is then followed by an essentially localized reaction. The reactions can involve either the C-H electrons or the C-C electrons. In the former case an H- ion is abstracted (Reactions 6 and 7, for example), and in the latter a kind of alkyl ion displacement (Reactions 8 and 9) occurs. However, the H abstraction reaction produces an ion oi m/e = MW — 1 regardless of the carbon atom from which the abstraction occurs, but the alkyl ion displacement reaction will give fragment alkyl ions of different m /e values. Thus the much larger intensity of the MW — 1 alkyl ion is explained. From the relative intensities of the MW — 1 ion (about 32%) and the sum of the intensities of the smaller fragment ions (about 68%), we must conclude that the attacking ion effects C-C bond fission about twice as often as C-H fission. [Pg.180]

Seven chemical reactions were identified from the chemistry syllabus. These chemical reactions were selected because they were frequently encountered during the 2-year chemistiy course and based on their importance in understanding concepts associated with three topics, namely, acids, bases and salts, metal reactivity series and inorganic chemistry qualitative analysis. The seven types of chemical reactions were combustion of reactive metals in air, chemical reactions between dilute acids and reactive metals, neutralisation reactions between strong acids and strong alkalis, neutralisation reactions between dilute acids and metal oxides, chemical reactions between dilute acids and metal carbonates, ionic precipitation reactions and metal ion displacement reactions. Although two of the chemical reactions involved oxidation and reduction, it was decided not to include the concept of redox in this study as students had only recently been introduced to ion-electron... [Pg.155]

The cleavage stage of the haloform reaction may be regarded as a hydroxide ion displacement reaction at the keto group, although again w e cannot be sure that preliminary addition at the carbonyl group does not take place (p. 90) ... [Pg.207]

Again in reaction (3) it is rather an involved process to transfer an oxygen atom from the structure HO—OH to the ion I+ since it involves the breaking of two bonds and formation of two bonds in one step. A more probable alternative would seem to be the ion displacement reaction... [Pg.40]

The mechanism involved in the formation of the alkyl ions other than the quasiparent ion is not known with certainty. They may be formed by a direct electrophilic attack on C—C bonding electrons in a process which can be looked upon as a kind of alkide ion displacement reaction. For example, for the formation of the octyl ion from octadecane, one can write... [Pg.271]

One can see from Table VI that the dissociative ionization process which is of greatest importance in isopropyl benzene and of overwhelming importance in t-amylbenzene is displacement of the alkyl group from the aromatic nucleus to form the alkyl ion. The large alkyl ion intensity is accompanied by a diminution in the intensities of (M + H)" " and (M -I- CjHj), and it is postulated that the alkyl ions are formed by alkyl ion displacement reactions ... [Pg.282]

Modified dextran ion exchangers also have served as phase transfer catalysts for iodide and cyanide ion displacement reactions with 1-bromobutane and l-bromooctane. Lipophilic substituents were... [Pg.210]

The Williamson ether synthesis (Sec tion 16 6) An alkoxide ion displaces a halide or similar leaving group in an Sn2 reaction The alkyl halide cannot be one that is prone to elimination and so this reaction is limited to methyl and primary alkyl halides There is no limitation on the alkoxide ion that can be used... [Pg.693]

Solvent for Displacement Reactions. As the most polar of the common aprotic solvents, DMSO is a favored solvent for displacement reactions because of its high dielectric constant and because anions are less solvated in it (87). Rates for these reactions are sometimes a thousand times faster in DMSO than in alcohols. Suitable nucleophiles include acetyUde ion, alkoxide ion, hydroxide ion, azide ion, carbanions, carboxylate ions, cyanide ion, hahde ions, mercaptide ions, phenoxide ions, nitrite ions, and thiocyanate ions (31). Rates of displacement by amides or amines are also greater in DMSO than in alcohol or aqueous solutions. Dimethyl sulfoxide is used as the reaction solvent in the manufacture of high performance, polyaryl ether polymers by reaction of bis(4,4 -chlorophenyl) sulfone with the disodium salts of dihydroxyphenols, eg, bisphenol A or 4,4 -sulfonylbisphenol (88). These and related reactions are made more economical by efficient recycling of DMSO (89). Nucleophilic displacement of activated aromatic nitro groups with aryloxy anion in DMSO is a versatile and useful reaction for the synthesis of aromatic ethers and polyethers (90). [Pg.112]

Rates of Reaction. The rates of formation and dissociation of displacement reactions are important in the practical appHcations of chelation. Complexation of many metal ions, particulady the divalent ones, is almost instantaneous, but reaction rates of many higher valence ions are slow enough to measure by ordinary kinetic techniques. Rates with some ions, notably Cr(III) and Co (III), maybe very slow. Systems that equiUbrate rapidly are termed kinetically labile, and those that are slow are called kinetically inert. Inertness may give the appearance of stabiUty, but a complex that is apparentiy stable because of kinetic inertness maybe unstable in the thermodynamic equihbrium sense. [Pg.386]

Three features of chelation chemistry are fundamental to most of the appHcations of the chelating agents. The first and probably the most extensively used feature is the control of free metal ion concentration by means of the binding—dissociation equiUbria. The second, often called the preparative feature, is that in which the special properties of the chelate itself provide the basis of the appHcation. The third feature comprises displacement reactions metal by other metal ions, chelant by chelant, and chelant by other ligands or ions. An appHcation may be termed defensive if an undesirable property in a process or product is mitigated, or aggressive if a new and beneficial property is induced. [Pg.392]

DispEcement. In many of the appHcations of chelating agents, the overall effect appears to be a displacement reaction, although the mechanism probably comprises dissociations and recombinations. The basis for many analytical titrations is the displacement of hydrogen ions by a metal, and the displacement of metal by hydrogen ions or other metal ions is a step in metal recovery processes. Some analytical pM indicators function by changing color as one chelant is displaced from its metal by another. [Pg.393]

Figure 1 illustrates the complexity of the Cr(III) ion in aqueous solutions. The relative strength of anion displacement of H2O for a select group of species follows the order perchlorate < nitrate < chloride < sulfate < formate < acetate < glycolate < tartrate < citrate < oxalate (12). It is also possible for any anion of this series to displace the anion before it, ie, citrate can displace a coordinated tartrate or sulfate anion. These displacement reactions are kineticaHy slow, however, and several intermediate and combination species are possible before equiUbrium is obtained. [Pg.135]

Studies of the stereochemical course of rmcleophilic substitution reactions are a powerful tool for investigation of the mechanisms of these reactions. Bimolecular direct displacement reactions by the limSj.j2 meohanism are expected to result in 100% inversion of configuration. The stereochemical outcome of the lirnSj l ionization mechanism is less predictable because it depends on whether reaction occurs via one of the ion-pair intermediates or through a completely dissociated ion. Borderline mechanisms may also show variable stereochemistry, depending upon the lifetime of the intermediates and the extent of internal return. It is important to dissect the overall stereochemical outcome into the various steps of such reactions. [Pg.302]

Various sources of fluoride ion have been investigated, of which highly nucleophilic tetraalkylammonium fluorides ate the most effective Thuf, fluoro alkyl halides and N (fluoroalkyl)amines are efficiently synthesized by treatment of the corresponding trifluoromethanesulfonic esters with tetrabutylammonium fluoride trihydrate in aprotic solvents [5fl] (equation 34) The displacement reactions proceed quantitatively at room temperature within seconds, but tail with hydrogen fluoride-pyridine and give reasonable yields only with hydrogen fluo ride-alkylamine reagents... [Pg.213]

Kinetic studies have been carried out on the displacement reactions of various chloroazanaphthalenes with ethoxide ions and piperi-dine. - 2-Chloroquinoxaline is even more reactive than 2-chloro-quinazoline, thus demonstrating the powerfully electrophilic nature of the -carbon atoms in the quinoxaline nucleus. The ease of displacement of a-chlorine in the quinoxaline series is of preparative value thus, 2-alkoxy-, 2-amino-, - 2-raethylamino-, 2-dimethyl-amino-,2-benzylamino-, 2-mercapto-quinoxalines are all readily prepared from 2-chloroquinoxaline. The anions derived from substituted acetonitriles have also been used to displace chloride ion from 2-chloroquinoxaline, ... [Pg.212]

Substitution of an additional nitrogen atom onto the three-carbon side chain also serves to suppress tranquilizing activity at the expense of antispasmodic activity. Reaction of phenothia zine with epichlorohydrin by means of sodium hydride gives the epoxide 121. It should be noted that, even if initial attack in this reaction is on the epoxide, the alkoxide ion that would result from this nucleophilic addition can readily displace the adjacent chlorine to give the observed product. Opening of the oxirane with dimethylamine proceeds at the terminal position to afford the amino alcohol, 122. The amino alcohol is then converted to the halide (123). A displacement reaction with dimethylamine gives aminopromazine (124). ... [Pg.390]

Nucleophilic displacement reactions One of the most common reactions in organic synthesis is the nucleophilic displacement reaction. The first attempt at a nucleophilic substitution reaction in a molten salt was carried out by Ford and co-workers [47, 48, 49]. FFere, the rates of reaction between halide ion (in the form of its tri-ethylammonium salt) and methyl tosylate in the molten salt triethylhexylammoni-um triethylhexylborate were studied (Scheme 5.1-20) and compared with similar reactions in dimethylformamide (DMF) and methanol. The reaction rates in the molten salt appeared to be intermediate in rate between methanol and DMF (a dipolar aprotic solvent loiown to accelerate Sn2 substitution reactions). [Pg.184]

A quantitative study of the nucleophilic displacement reaction of benzoyl chloride with cyanide ion in [BMIM][PFg] was investigated by Eckert and co-workers [52]. The separation of the product, 1-phenylacetonitrile, from the ionic liquid was achieved by distillation or by extraction with supercritical CO2. The 1-phenylacetonitrile was then treated with KOH in [BMIM][PF6] to generate an anion, which reacted with 1,4-dibromobutane to give 1-cyano-l-phenylcyclopentane (Scheme 5.1-23). This was in turn extracted from the ionic liquid with supercritical CO2. These... [Pg.185]

However, heterocycles containing thiophenols have not been reported. It has been observed that the thiophe-nolate ion undergoes nucleophilic attack by the halo/ nitro compounds more easily than the phenolate ion in displacement reactions [37-39]. The experimental result shows that the reactivity of 3-nitro-N-phenyl-phthali-mide with 4-methyl-thiophenolate (reaction 1) is 100 times faster than that of 4-methyl phenolate [40] (reaction 2) ... [Pg.37]

This result is attributed to participation by the neighboring methoxy group at position 1 (formula 18) in the phosphorus pentachloride displacement reaction. A cyclic methoxonium ion (22) is postulated as the intermediate. The overall result is methoxyl migration from 1 to 6, with inversion of configuration at both positions (27). [Pg.55]

Another deviation from the normal displacement reaction of primary tosylates occurs in nucleoside derivatives (39, 81) where cyclonucleosides and anhydronucleosides are formed by participation of a nitrogen atom (as in purine nucleosides) and oxygen atom (as in pyrimidine nucleosides ), respectively. Iodonucleosides can result from these reactions only if these cyclic compounds are prone to attack by iodide ion. Several new examples of unexpected reactions during the solvolysis of sulfonate esters in sugar derivatives have been recorded in the past few years (2, 4,5,7,15,44,62,63,94). [Pg.169]

In the original work (72), the authors stated that heating of 42 with excess sodium iodide did not result in further exchange. The extensive studies of Stevens and co-workers (96, 97) on the displacement reactions of compounds much related to 40, indicate that the C-4 sulfonate group can indeed be displaced by various nucleophiles. In fact compound 42 and its C-4 epimer (43) (d-threo) have been subjected to displacement reactions with benzoate (38), acetate and azide (98) ions to give the corresponding C-4 inverted products. [Pg.178]

Because they re negatively charged, enolate ions act as nucleophiles and undergo many of the reactions we ve already studied. For example, enolates react with primary alkyl halides in the SK2 reaction. The nucleophilic enolate ion displaces halide ion, and a new C-C bond forms ... [Pg.692]


See other pages where Ion displacement reaction is mentioned: [Pg.5584]    [Pg.5583]    [Pg.5584]    [Pg.5583]    [Pg.816]    [Pg.109]    [Pg.32]    [Pg.58]    [Pg.32]    [Pg.36]    [Pg.159]    [Pg.163]    [Pg.170]    [Pg.289]    [Pg.242]    [Pg.301]    [Pg.327]    [Pg.990]    [Pg.208]    [Pg.812]    [Pg.764]    [Pg.172]    [Pg.294]    [Pg.308]    [Pg.279]    [Pg.102]    [Pg.102]   
See also in sourсe #XX -- [ Pg.40 ]




SEARCH



Ions, displacement

Metal ions, solvated, displacement reactions

Reaction displacement

© 2024 chempedia.info